We have previously demonstrated that the growth of peripheral nervous system axons is strongly attracted towards limb buds and skin explants in vitro. Here, we show that directed axonal growth towards skin explants of Xenopus laevis in matrigel is associated with expression of matrix metalloproteinase (MMP)-18 and also other MMPs, and that this long-range neurotropic activity is inhibited by the broad-spectrum MMP inhibitors BB-94 and GM6001. We also show that forced expression of MMP-18 in COS-7 cell aggregates enhances axonal growth from Xenopus dorsal root ganglia explants.
View Article and Find Full Text PDFThe molecular basis of axonal regeneration of central nervous system (CNS) neurons remains to be fully elucidated. In part, this is due to the difficulty in maintaining CNS neurons in vitro. Here, we show that dissociated neurons from the cerebral cortex and hippocampus of adult mice may be maintained in culture for up to 9 days in defined medium without added growth factors.
View Article and Find Full Text PDFAxonal regeneration is enhanced by the prior ;conditioning' of peripheral nerve lesions. Here we show that Xenopus dorsal root ganglia (DRG) with attached peripheral nerves (PN-DRG) can be conditioned in vitro, thereafter showing enhanced neurotrophin-induced axonal growth similar to preparations conditioned by axotomy in vivo. Actinomycin D inhibits axonal outgrowth from freshly dissected PN-DRG, but not from conditioned preparations.
View Article and Find Full Text PDFThe GATA family of transcription factors are known to play multiple critical roles in vertebrate developmental processes, including erythropoiesis, endoderm formation and cardiogenesis. There have been no previous demonstrations of a functional role for any GATA family member being associated with musculoskeletal development but we now identify a possible role for GATA-6 in chondrogenesis. We detect abundant levels of GATA-6 mRNA in precartilaginous condensations (PCCs) in both the axial and appendicular skeleton of mouse embryos and in committed primary chondrocyte precursors.
View Article and Find Full Text PDFThe design and performance characterization of a new light-weight and compact X-ray scintillation detector is presented. The detectors are intended for use on the new I11 powder diffraction beamline at the third-generation Diamond synchrotron facility where X-ray beams of high photon brightness are generated by insertion devices. The performance characteristics of these detection units were measured first using a radioactive source (efficiency of detection and background count rate) and then synchrotron X-rays (peak stability, light yield linearity and response consistency).
View Article and Find Full Text PDFThe subpopulation of dorsal root ganglion (DRG) neurons recognized by Griffonia simplicifolia isolectin B4 (IB4) differ from other neurons by expressing receptors for glial cell line-derived neurotrophic factor (GDNF) rather than neurotrophins. Additionally, IB4-labeled neurons do not express the laminin receptor, alpha7-integrin (Gardiner et al., 2005), necessary for optimal axonal regeneration in the peripheral nervous system.
View Article and Find Full Text PDFVertebrate heart formation is dependent upon complex hierarchical gene regulatory networks, which effect both the specification and differentiation of cardiomyocytes and subsequently cardiac morphogenesis. GATA-4, -5 and -6 comprise an evolutionarily conserved subfamily of transcription factors, which are expressed within the precardiac mesoderm from early stages in its specification and continue to be expressed within the adult heart. We review here the functional roles of individual GATA transcription factors in cardiac development, normal homeostasis and disease.
View Article and Find Full Text PDFThe GATA4, 5 and 6 subfamily of transcription factors are potent transactivators of transcription expressed within the precardiac mesoderm. However, little is known of the immediate downstream targets of GATA-factor regulation during the earliest stages of cardiogenesis. Using the P19-CL6 embryonal carcinoma (EC) cell line as an in vitro model of cardiogenesis, we show that GATA6 is the most abundantly expressed of the GATA factors in presumptive cardiac cells.
View Article and Find Full Text PDFMembers of the GATA-4, -5, and -6 subfamily of transcription factors are co-expressed with the homeoprotein Nkx 2.5 in the precardiac mesoderm during the earliest stages of its specification and are known to be important determinants of cardiac gene expression. Ample evidence suggests that GATA factors and Nkx 2.
View Article and Find Full Text PDFNon-viral methods of transfection of cDNAs into adult neurons and other post-mitotic cells are generally very inefficient. However, the recent development of Nucleofector technology developed by Amaxa Biosystems allows direct delivery of cDNAs into the nucleus, enabling transfection of non-dividing cells. In this study, we describe a reliable method for culturing large numbers of retinal cells from adult rats and using Nucleofection, we were able to transfect cDNA-encoding GFP (jellyfish green fluorescent protein) into retinal ganglion cells (RGCs) with relatively high efficiency (up to 28%).
View Article and Find Full Text PDFSulfonation is a phase II conjugation reaction responsible for the biotransformation of many compounds including steroids, bile acids, and drugs. Humans are presently known to express at least five cytosolic sulfotransferase (SULT) enzymes, of which only two are hydroxysteroid SULT, SULT2A1, commonly known as steroid sulfotransferase, and the cholesterol sulfotransferase SULT2B1. SULT2A1 is highly expressed in the adrenal where it is responsible for the sulfation of hydroxysteroids including conversion of dehydroepiandrosterone to dehydroepiandrosterone sulfate and in the liver where it is responsible for sulfation of bile acids and circulating hydroxysteroids.
View Article and Find Full Text PDFThe mechanisms for directing axons to their targets in developing limbs remain largely unknown though recent studies in mice have demonstrated the importance of neurotrophins in this process. We now report that in co-cultures of larval Xenopus laevis limb buds with spinal cords and dorsal root ganglia of Xenopus and axolotl (Ambystoma mexicanum) axons grow directly to the limb buds over distances of up to 800 microm and in particular to sheets of epidermal cells which migrate away from the limb buds and also tail segments in culture. This directed axonal growth persists in the presence of trk-IgG chimeras, which sequester neurotrophins, and k252a, which blocks their actions mediated via trk receptors.
View Article and Find Full Text PDFThe transcription factor GATA-6 is known to be a critical determinant of early vertebrate development. We have shown previously that mammalian GATA-6 genes have the potential to encode two protein isoforms, resulting from alternative, in-frame, initiator methionine codons. We have generated GATA-6 antibodies, including one specific to the longer form of GATA-6, and by immunohistochemical analysis we demonstrate here that the longer protein, which is the more potent transcriptional transactivator, is widely expressed in vivo.
View Article and Find Full Text PDFConditioning lesions of peripheral nerves improve axonal regeneration after injury and involve changes in expression of proteins required for axonal growth. Integrin alpha7beta1 expression in motor and sensory neurons increases following nerve lesions and motor axon regeneration is impaired in alpha7 integrin KO mice (J. Neurosci.
View Article and Find Full Text PDFThe transcription factor GATA-6 is known to be a critical determinant of early vertebrate development. We have shown previously that mammalian GATA-6 genes have the potential to encode two protein isoforms, resulting from alternative, in-frame, initiator methionine codons. We have generated GATA-6 antibodies, including one specific to the longer form of GATA-6, and by immunohistochemical analysis we demonstrate here that the longer protein, which is the more potent transcriptional transactivator, is widely expressed in vivo.
View Article and Find Full Text PDF