Publications by authors named "John Pietzsch"

A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) against HIV-1 provide both effective pre-exposure prophylaxis and treatment of HIV-1 infection in murine and nonhuman primate models, suggesting their potential use in humans. Although much is known about the role of variable domains in the neutralization breadth and potency of these bNAbs, the contribution of Fc domains to their activities is, by contrast, poorly characterized. Assessment of the in vivo activity of several bNAbs revealed that FcγR-mediated effector function contributes substantially to their capacity to block viral entry, suppress viremia, and confer therapeutic activity.

View Article and Find Full Text PDF

The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capable of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible small-animal model to rapidly measure viral entry.

View Article and Find Full Text PDF

Passive transfer of neutralizing antibodies against HIV-1 can prevent infection in macaques and seems to delay HIV-1 rebound in humans. Anti-HIV antibodies are therefore of great interest for vaccine design. However, the basis for their in vivo activity has been difficult to evaluate systematically because of a paucity of small animal models for HIV infection.

View Article and Find Full Text PDF

Two to three years after infection, a fraction of HIV-1-infected individuals develop serologic activity that neutralizes most viral isolates. Broadly neutralizing antibodies that recognize the HIV-1 envelope protein have been isolated from these patients by single-cell sorting and by neutralization screens. Here, we report a new method for anti-HIV-1 antibody isolation based on capturing single B cells that recognize the HIV-1 envelope protein expressed on the surface of transfected cells.

View Article and Find Full Text PDF

Background/objective: The epidemiology of hepatitis C virus (HCV) infection has been partially described for at risk groups in urban communities in Nigeria. On the other hand, literature on the possible spread of the virus in rural Nigeria remains extremely scanty. The objective of this study was to estimate the prevalence of HCV in a rural and urban community in Nigeria.

View Article and Find Full Text PDF

Understanding the antibody response to HIV-1 in humans that show broad neutralizing serologic activity is a crucial step in trying to reproduce such responses by vaccination. Investigating antibodies with cross clade reactivity is particularly important as these antibodies may target conserved epitopes on the HIV envelope gp160 protein. To this end we have used a clade B YU-2 gp140 trimeric antigen and single-cell antibody cloning methods to obtain 189 new anti-gp140 antibodies representing 51 independent B cell clones from the IgG memory B cells of 3 patients infected with HIV-1 clade A or B viruses and exhibiting broad neutralizing serologic activity.

View Article and Find Full Text PDF

Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals.

View Article and Find Full Text PDF

During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding.

View Article and Find Full Text PDF

The identification and characterization of conserved epitopes on the HIV-1 viral spike that are immunogenic in humans and targeted by neutralizing antibodies is an important step in vaccine design. Antibody cloning experiments revealed that 32% of all HIV-neutralizing antibodies expressed by the memory B cells in patients with high titers of broadly neutralizing antibodies recognize one or more "core" epitopes that were not defined. Here, we show that anti-core antibodies recognize a single conserved epitope on the gp120 subunit.

View Article and Find Full Text PDF

Most HIV-infected individuals develop antibodies to the gp120 and gp41 components of the viral spike; however, only a fraction of these individuals mount a broadly neutralizing serum response against HIV. We have cloned anti-HIV antibodies from the memory B-cell compartment of six individuals with variable viral loads and high titers of broadly neutralizing antibodies. Here, we report on the features of the anti-gp41 response in these patients.

View Article and Find Full Text PDF

Antibodies to conserved epitopes on the human immunodeficiency virus (HIV) surface protein gp140 can protect against infection in non-human primates, and some infected individuals show high titres of broadly neutralizing immunoglobulin (Ig)G antibodies in their serum. However, little is known about the specificity and activity of these antibodies. To characterize the memory antibody responses to HIV, we cloned 502 antibodies from HIV envelope-binding memory B cells from six HIV-infected patients with broadly neutralizing antibodies and low to intermediate viral loads.

View Article and Find Full Text PDF