An optimization-based image reconstruction algorithm is developed for contrast enhanced digital breast tomosynthesis (DBT) using dual-energy scanning. The algorithm minimizes directional total variation (TV) with a data discrepancy and non-negativity constraints. Iodinated contrast agent (ICA) imaging is performed by reconstructing images from dual-energy DBT data followed by weighted subtraction.
View Article and Find Full Text PDFBackground: Dual-energy CT (DECT) systems provide valuable material-specific information by simultaneously acquiring two spectral measurements, resulting in superior image quality and contrast-to-noise ratio (CNR) while reducing radiation exposure and contrast agent usage. The selection of DECT scan parameters, including x-ray tube settings and fluence, is critical for the stability of the reconstruction process and hence the overall image quality.
Purpose: The goal of this study is to propose a systematic theoretical method for determining the optimal DECT parameters for minimal noise and maximum CNR in virtual monochromatic images (VMIs) for fixed subject size and total radiation dose.
Many useful image quality metrics for evaluating linear image reconstruction techniques do not apply to or are difficult to interpret for nonlinear image reconstruction. The vast majority of metrics employed for evaluating nonlinear image reconstruction are based on some form of global image fidelity, such as image root mean square error (RMSE). Use of such metrics can lead to overregularization in the sense that they can favor removal of subtle details in the image.
View Article and Find Full Text PDF