Publications by authors named "John Paisley"

Faithful measurement of perceptual quality is of significant importance to various multimedia applications. By fully utilizing reference images, full-reference image quality assessment (FR-IQA) methods usually achieves better prediction performance. On the other hand, no-reference image quality assessment (NR-IQA), also known as blind image quality assessment (BIQA), which does not consider the reference image, makes it a challenging but important task.

View Article and Find Full Text PDF

With growing size of resting state fMRI datasets and advances in deep learning methods, there are ever increasing opportunities to leverage progress in deep learning to solve challenging tasks in neuroimaging. In this work, we build upon recent advances in deep metric learning, to learn embeddings of rs-fMRI data, which can then be potentially used for several downstream tasks. We propose an efficient training method for our model and compare our method with other widely used models.

View Article and Find Full Text PDF

Optimization algorithms are of great importance to efficiently and effectively train a deep neural network. However, the existing optimization algorithms show unsatisfactory convergence behavior, either slowly converging or not seeking to avoid bad local optima. Learning rate dropout (LRD) is a new gradient descent technique to motivate faster convergence and better generalization.

View Article and Find Full Text PDF

Despite impressive developments in deep convolutional neural networks for medical imaging, the paradigm of supervised learning requires numerous annotations in training to avoid overfitting. In clinical cases, massive semantic annotations are difficult to acquire where biomedical expert knowledge is required. Moreover, it is common when only a few annotated classes are available.

View Article and Find Full Text PDF

Background: CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.

View Article and Find Full Text PDF

We introduce a new deep detail network architecture with grouped multiscale dilated convolutions to sharpen images contain multiband spectral information. Specifically, our end-to-end network directly fuses low-resolution multispectral and panchromatic inputs to produce high-resolution multispectral results, which is the same goal of the pansharpening in remote sensing. The proposed network architecture is designed by utilizing our domain knowledge and considering the two aims of the pansharpening: spectral and spatial preservations.

View Article and Find Full Text PDF

Area under the receiver operating characteristics curve (AUC) is an important metric for a wide range of machine-learning problems, and scalable methods for optimizing AUC have recently been proposed. However, handling very large data sets remains an open challenge for this problem. This article proposes a novel approach to AUC maximization based on sampling mini-batches of positive/negative instance pairs and computing U-statistics to approximate a global risk minimization problem.

View Article and Find Full Text PDF

The identification of lesion within medical image data is necessary for diagnosis, treatment and prognosis. Segmentation and classification approaches are mainly based on supervised learning with well-paired image-level or voxel-level labels. However, labeling the lesion in medical images is laborious requiring highly specialized knowledge.

View Article and Find Full Text PDF

The segmentation of brain tissue in MRI is valuable for extracting brain structure to aid diagnosis, treatment and tracking the progression of different neurologic diseases. Medical image data are volumetric and some neural network models for medical image segmentation have addressed this using a 3D convolutional architecture. However, this volumetric spatial information has not been fully exploited to enhance the representative ability of deep networks, and these networks have not fully addressed the practical issues facing the analysis of multimodal MRI data.

View Article and Find Full Text PDF

Compressive sensing enables fast magnetic resonance imaging (MRI) reconstruction with undersampled k-space data. However, in most existing MRI reconstruction models, the whole MR image is targeted and reconstructed without taking specific tissue regions into consideration. This may fails to emphasize the reconstruction accuracy on important and region-of-interest (ROI) tissues for diagnosis.

View Article and Find Full Text PDF

Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g.

View Article and Find Full Text PDF

Compressed sensing (CS) theory assures us that we can accurately reconstruct magnetic resonance images using fewer k-space measurements than the Nyquist sampling rate requires. In traditional CS-MRI inversion methods, the fact that the energy within the Fourier measurement domain is distributed non-uniformly is often neglected during reconstruction. As a result, more densely sampled low frequency information tends to dominate penalization schemes for reconstructing MRI at the expense of high frequency details.

View Article and Find Full Text PDF

Compressed sensing (CS) theory can accelerate multi-contrast magnetic resonance imaging (MRI) by sampling fewer measurements within each contrast. However, conventional optimization-based reconstruction models suffer several limitations, including a strict assumption of shared sparse support, time-consuming optimization, and "shallow" models with difficulties in encoding the patterns contained in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast CS-MRI reconstruction.

View Article and Find Full Text PDF

The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.

View Article and Find Full Text PDF

This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information.

View Article and Find Full Text PDF

We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training.

View Article and Find Full Text PDF

Background: Cancer is a complex disease driven by somatic genomic alterations (SGAs) that perturb signaling pathways and consequently cellular function. Identifying patterns of pathway perturbations would provide insights into common disease mechanisms shared among tumors, which is important for guiding treatment and predicting outcome. However, identifying perturbed pathways is challenging, because different tumors can have the same perturbed pathways that are perturbed by different SGAs.

View Article and Find Full Text PDF

We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual. We introduce a combinatorial stochastic process known as the negative binomial process ( NBP ) as an infinite-dimensional prior appropriate for such problems. We show that the NBP is conjugate to the beta process, and we characterize the posterior distribution under the beta-negative binomial process ( BNBP) and hierarchical models based on the BNBP (the HBNBP).

View Article and Find Full Text PDF

We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This alleviates the rigid, single-path formulation assumed by the nCRP, allowing documents to easily express complex thematic borrowings.

View Article and Find Full Text PDF

We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements.

View Article and Find Full Text PDF

Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions.

View Article and Find Full Text PDF

Nonparametric Bayesian methods are employed to constitute a mixture of low-rank Gaussians, for data ∈ ℝ that are of high dimension but are constrained to reside in a low-dimensional subregion of ℝ . The number of mixture components and their rank are inferred automatically from the data. The resulting algorithm can be used for learning manifolds and for reconstructing signals from manifolds, based on compressive sensing (CS) projection measurements.

View Article and Find Full Text PDF

Background: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors.

View Article and Find Full Text PDF

We consider the problem of inferring and modeling topics in a sequence of documents with known publication dates. The documents at a given time are each characterized by a topic and the topics are drawn from a mixture model. The proposed model infers the change in the topic mixture weights as a function of time.

View Article and Find Full Text PDF