Caregiver-infant interactions shape infants' early visual experience; however, there is limited work from low-and middle-income countries (LMIC) in characterizing the visual cognitive dynamics of these interactions. Here, we present an innovative dyadic visual cognition pipeline using machine learning methods which captures, processes, and analyses the visual dynamics of caregiver-infant interactions across cultures. We undertake two studies to examine its application in both low (rural India) and high (urban UK) resource settings.
View Article and Find Full Text PDFThe interaction of visual exploration and auditory processing is central to early cognitive development, supporting object discrimination, categorization, and word learning. Research has shown visual-auditory interactions to be complex, created from multiple processes and changing over multiple timescales. To better understand these interactions, we generalize a formal neural process model of early word learning to two studies examining how words impact 9- to 22-month-olds' attention to novelty.
View Article and Find Full Text PDFStunting is associated with poor long-term cognitive, academic and economic outcomes, yet the mechanisms through which stunting impacts cognition in early development remain unknown. In a first-ever neuroimaging study conducted on infants from rural India, we demonstrate that stunting impacts a critical, early-developing cognitive system-visual working memory. Stunted infants showed poor visual working memory performance and were easily distractible.
View Article and Find Full Text PDFThe language environment to which children are exposed has an impact on later language abilities as well as on brain development; however, it is unclear how early such impacts emerge. This study investigates the effects of children's early language environment and socioeconomic status (SES) on brain structure in infancy at 6 and 30 months of age (both sexes included). We used magnetic resonance imaging to quantify concentrations of myelin in specific fiber tracts in the brain.
View Article and Find Full Text PDFBackground: Poor air quality has been linked to cognitive deficits in children, but this relationship has not been examined in the first year of life when brain growth is at its peak.
Methods: We measured in-home air quality focusing on particulate matter with diameter of <2.5 μm (PM) and infants' cognition longitudinally in a sample of families from rural India.
Over the last several years, the study of working memory (WM) for simple visual features (e.g., colors, orientations) has been dominated by perspectives that assume items in WM are stored independently of one another.
View Article and Find Full Text PDFA key question in early development is how changes in neural systems give rise to changes in infants' behavior. We examine this question by testing predictions of a dynamic field (DF) model of infant spatial attention. We tested 5-, 7-, and 10-month-old infants in the Infant Orienting With Attention (IOWA) task containing the original non-competitive cue conditions (when a central stimulus disappeared before a cue onset) and new competitive cue conditions (when a central stimulus remained visible throughout the trial).
View Article and Find Full Text PDF: Image reconstruction of fNIRS data is a useful technique for transforming channel-based fNIRS into a volumetric representation and managing spatial variance based on optode location. We present an innovative integrated pipeline for image reconstruction of fNIRS data using either MRI templates or individual anatomy. We demonstrate a pipeline with accompanying code to allow users to clean and prepare optode location information, prepare and standardize individual anatomical images, create the light model, run the 3D image reconstruction, and analyze data in group space.
View Article and Find Full Text PDFFlexibly shifting attention between stimulus dimensions (e.g., shape and color) is a central component of regulating cognition for goal-based behavior.
View Article and Find Full Text PDFInfants, children, and adults have been shown to track co-occurrence across ambiguous naming situations to infer the referents of new words. The extensive literature on this cross-situational word learning (CSWL) ability has produced support for two theoretical accounts-associative learning (AL) and hypothesis testing (HT)-but no comprehensive model of the behavior. We propose Word-Object Learning via Visual Exploration in Space (WOLVES), an implementation-level account of CSWL grounded in real-time psychological processes of memory and attention that explicitly models the dynamics of looking at a moment-to-moment scale and learning across trials.
View Article and Find Full Text PDFFew studies have investigated the neural mechanisms underlying speech production in children who stutter (CWS), despite the critical importance of understanding these mechanisms closer to the time of stuttering onset. The relative contributions of speech planning and execution in CWS therefore are also unknown. Using functional near-infrared spectroscopy, the current study investigated neural mechanisms of planning and execution in a small sample of 9-12 year-old CWS and controls (N = 12) by implementing two tasks that manipulated speech planning and execution loads.
View Article and Find Full Text PDFWorking memory is a central cognitive system that plays key role in development, with increases in working memory capacity and speed of processing as children move from infancy through adolescence. Here, I focus on two questions: what neural processes underlie working memory and how do these processes change over development? Answers to these questions lie in computer simulations of artificial neural network models that shed light on how development happens. These models open up new avenues for optimizing clinical interventions aimed at boosting the working memory abilities of at-risk infants.
View Article and Find Full Text PDFThere is consensus that activation within distributed functional brain networks underlies human thought. The impact of this consensus is limited, however, by a gap that exists between data-driven correlational analyses that specify where functional brain activity is localized using functional magnetic resonance imaging (fMRI), and neural process accounts that specify how neural activity unfolds through time to give rise to behavior. Here, we show how an integrative cognitive neuroscience approach may bridge this gap.
View Article and Find Full Text PDFIn their 2007b Psychological Review paper, Xu and Tenenbaum found that early word learning follows the classic logic of the "suspicious coincidence effect:" when presented with a novel name ('fep') and three identical exemplars (three Labradors), word learners generalized novel names more narrowly than when presented with a single exemplar (one Labrador). Xu and Tenenbaum predicted the suspicious coincidence effect based on a Bayesian model of word learning and demonstrated that no other theory captured this effect. Recent empirical studies have revealed, however, that the effect is influenced by factors seemingly outside the purview of the Bayesian account.
View Article and Find Full Text PDFVisual working memory (VWM) is a central cognitive system used to compare views of the world and detect changes in the local environment. This system undergoes dramatic development in the first two years; however, we know relatively little about the functional organization of VWM at the level of the brain. Here, we used image-based functional near-infrared spectroscopy (fNIRS) to test four hypotheses about the spatial organization of the VWM network in early development.
View Article and Find Full Text PDFTrends toward encephalization and technological complexity ∼1.8 million years ago may signify cognitive development in the genus Homo. Using functional near-infrared spectroscopy, we measured relative brain activity of 33 human subjects at three different points as they learned to make replicative Oldowan and Acheulian Early Stone Age tools.
View Article and Find Full Text PDFOur study aimed to determine the neural correlates of speech planning and execution in adults who stutter (AWS). Fifteen AWS and 15 controls (CON) completed two tasks that either manipulated speech planning or execution processing loads. Functional near-infrared spectroscopy (fNIRS) was used to measure changes in blood flow concentrations during each task, thus providing an indirect measure of neural activity.
View Article and Find Full Text PDFThere is a growing need to understand the global impact of poverty on early brain and behavioural development, particularly with regard to key cognitive processes that emerge in early development. Although the impact of adversity on brain development can trap children in an intergenerational cycle of poverty, the massive potential for brain plasticity is also a source of hope: reliable, accessible, culturally agnostic methods to assess early brain development in low resource settings might be used to measure the impact of early adversity, identify infants for timely intervention and guide the development and monitor the effectiveness of early interventions. Visual working memory (VWM) is an early marker of cognitive capacity that has been assessed reliably in early infancy and is predictive of later academic achievement in Western countries.
View Article and Find Full Text PDFThe gay traveler, a segment of the lesbian, gay, bisexual, and transgender (LGBT) travel market, is perceived to be a homogeneous market segment as a result of the assumption that gay men have a unique "homosexual lifestyle." This assumption is problematic as it conceals many other important variables, and it may hinder effective destination marketing. A Web-based electronic survey was completed by 469 gay male travelers, and attribute-based benefit segmentation was carried out by applying a hierarchical cluster analysis using Ward's procedure with Euclidean distances.
View Article and Find Full Text PDFMotion artifacts are often a significant component of the measured signal in functional near-infrared spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address this issue, including principal components analysis (PCA), correlation-based signal improvement (CBSI), wavelet filtering, and spline interpolation. The efficacy of these techniques has been compared using simulated data; however, our understanding of how these techniques fare when dealing with task-based cognitive data is limited.
View Article and Find Full Text PDFA fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that effectively span the gap between brain and behavior, between neuroscience and psychology. Here, we attempt to bridge this divide by formalizing an integrative cognitive neuroscience approach using dynamic field theory (DFT). We begin by providing an overview of how DFT seeks to understand the neural population dynamics that underlie cognitive processes through previous applications and comparisons to other modeling approaches.
View Article and Find Full Text PDFExecutive function (EF) is a key cognitive process that emerges in early childhood and facilitates children's ability to control their own behavior. Individual differences in EF skills early in life are predictive of quality-of-life outcomes 30 years later (Moffitt et al., 2011).
View Article and Find Full Text PDFPrevious neuroimaging studies have reported a posterior to anterior shift of activation in ageing (PASA). Here, we explore the nature of this shift by modulating load (1,2 or 3 items) and perceptual complexity in two variants of a visual working memory task (VWM): a 'simple' color and a 'complex' shape change detection task. Functional near-infrared spectroscopy (fNIRS) was used to record changes in activation in younger (N=24) and older adults (N=24).
View Article and Find Full Text PDFExecutive function (EF) plays a foundational role in development. A brain-based model of EF development is probed for the experiences that strengthen EF in the dimensional change card sort task in which children sort cards by one rule and then are asked to switch to another. Three-year-olds perseverate on the first rule, failing the task, whereas 4-year-olds pass.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
March 2017
To behave adaptively in complex and dynamic environments, one must link perception and action to satisfy internal states, a process known as response selection (RS). A largely unexplored topic in the study of RS is how interstimulus and interresponse similarity affect performance. To examine this issue, we manipulated stimulus similarity by using colors that were either similar or dissimilar and manipulated response similarity by having participants move a mouse cursor to locations that were either close together or far apart.
View Article and Find Full Text PDF