Publications by authors named "John P Scholz"

In the original publication of the article, the corrections for the typographical errors in the equations for variance that affects the footpath (V) and the total variance (V) should be as following.

View Article and Find Full Text PDF

Objective: Body Weight Supported Treadmill Training (BWSTT) with therapists' assistance is often used for gait rehabilitation post-stroke. However, this training method is labor-intensive, requiring at least one or as many as three therapists at once for manual assistance. Previously, we demonstrated that providing movement guidance using a performance-based robot-aided gait training (RAGT) that applies a compliant, assist-as-needed force-field improves gait pattern and functional walking ability in people post-stroke.

View Article and Find Full Text PDF

In this study, we investigated deficits in coordination of trunk muscle modes involved in the stabilization of the trunk's trajectory for reaching upward and downward beyond functional arm length. Trunk muscle activity from 10 stroke survivors (8 men, 2 women; 64.1 ± 10.

View Article and Find Full Text PDF

The central nervous system (CNS) is believed to use the abundant degrees of freedom of muscles and joints to stabilize a particular task variable important for task success, such as footpath during walking. Stroke survivors often demonstrate impaired balance and high incidences of falls due to increased footpath variability during walking. In the current study, we use the uncontrolled manifold (UCM) approach to investigate the role of motor abundance in stabilizing footpath during swing phase in healthy individuals and stroke survivors.

View Article and Find Full Text PDF

Differences between 12 left-brain (LCVA, 65.4 ± 11.7 years old) and 10 right-brain (RCVA, 61 ± 12.

View Article and Find Full Text PDF

In this study, we investigated deficits in coordination of trunk muscle modes involved in the stabilization of the trunk's trajectory for reaching upward and downward beyond functional arm length. Trunk muscle activity from 10 stroke survivors (8 men, 2 women; 64.1 ± 10.

View Article and Find Full Text PDF

A novel robot-aided assist-as-needed gait training paradigm has been developed recently. This paradigm encourages subjects' active participation during training. Previous pilot studies demonstrated that assist-as-needed robot-aided gait training (RAGT) improves treadmill walking performance post-stroke.

View Article and Find Full Text PDF

In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects.

View Article and Find Full Text PDF

Differences in joint coordination between arms and due to aging were studied in healthy young and older adults reaching to either a fixed, central target or to the same target when it could unexpectedly change location after reach initiation. Joint coordination was investigated by artificially removing the covariation of each joint's motions with other joints' motions. Uncontrolled manifold analysis was used to partition joint configuration variance into variance reflecting motor abundance (VUCM) and variance causing hand path variability (VORT).

View Article and Find Full Text PDF

The concept of motor equivalent combinations of arm muscles, or M-modes, was investigated during reaching to insert a pointer into a cylindrical target with and without an elbow perturbation. Five M-modes across 15 arm/scapula muscles were identified by principal component analysis with factor extraction. The relationship between small changes in the M-modes and changes in the position/orientation of the pointer were investigated by linear regression analyses.

View Article and Find Full Text PDF

This study joined two approaches to motor control. The first approach comes from cognitive psychology and is based on the idea that goal postures and movements are chosen to satisfy task-specific constraints. The second approach comes from the principle of motor abundance and is based on the idea that control of apparently redundant systems is associated with the creation of multi-element synergies stabilizing important performance variables.

View Article and Find Full Text PDF

Background: Abnormal hip mechanics are often implicated in female runners with patellofemoral pain. We sought to evaluate a simple gait retraining technique, using a full-length mirror, in female runners with patellofemoral pain and abnormal hip mechanics. Transfer of the new motor skill to the untrained tasks of single leg squat and step descent was also evaluated.

View Article and Find Full Text PDF

Background: Studies of human upright posture typically have stressed the need to control ankle and hip joints to achieve postural stability. Recent studies, however, suggest that postural stability involves multi degree-of-freedom (DOF) coordination, especially when performing supra-postural tasks. This study investigated kinematic synergies related to control of the body's position in space (two, four and six DOF models) and changes in the head's orientation (six DOF model).

View Article and Find Full Text PDF

Effective locomotion training with robotic exoskeletons requires identification of optimal control algorithms to better facilitate motor learning. Two commonly employed training protocols emphasize use of training stimuli that either augment or reduce performance errors. The current study sought to identify which of these training strategies promote better short-term modification of a typical gait pattern in healthy individuals as a framework for future application to neurologically impaired individuals.

View Article and Find Full Text PDF

Many activities require simultaneous performance of multiple tasks. Motor redundancy may provide a key mechanism for multitasking, ensuring minimal inter-task interference. This study investigated the effect of performing two supra-postural tasks on postural stability.

View Article and Find Full Text PDF

This study investigated trajectory timing variability in right and left stroke survivors and healthy controls when reaching to a centrally located target under a fixed target condition or when the target could suddenly change position after reach onset. Trajectory timing variability was investigated with a novel method based on dynamic programming that identifies the steps required to time warp one trial's acceleration time series to match that of a reference trial. Greater trajectory timing variability of both hand and joint motions was found for the paretic arm of stroke survivors compared to their non-paretic arm or either arm of controls.

View Article and Find Full Text PDF

We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex).

View Article and Find Full Text PDF

This study investigated whether short-term modifications of gait could be induced in healthy adults and whether a combination of kinetic (a compliant force resisting deviation of the foot from the prescribed footpath) and visual guidance was superior to either kinetic guidance or visual guidance alone in producing this modification. Thirty-nine healthy adults, 20-33 years old, were randomly assigned to the three groups receiving six 10-min blocks of treadmill training requiring them to modify their footpath to match a scaled-down path. Changes of the footpath, specific joint events and joint moments were analyzed.

View Article and Find Full Text PDF

This article investigates two methodological issues resulting from a recent study of center of mass positional stability during performance of whole-body targeting tasks (Freitas et al., 2006): (1) Can identical results be obtained with uncontrolled manifold (UCM) variance analysis when it is based on estimating the Jacobian using multiple linear regression (MLR) analysis compared to that using typical analytic formal geometric model? (2) Are kinematic synergies more related to stabilization of the instantaneous anterior-posterior position of the center of mass (COM(AP)) or the center of pressure (COP(AP))? UCM analysis was used to partition the variance of the joint configuration into 'bad' variance, leading to COM(AP) or COP(AP) variability, and 'good' variance, reflecting the use of motor abundance. Findings indicated (1) nearly identical UCM results for both methods of Jacobian estimation; and (2) more 'good' and less 'bad' joint variance related to stability of COP(AP) than to COM(AP) position.

View Article and Find Full Text PDF

Uncontrolled Manifold (UCM) analysis has been used to identify a component of joint variance leading to pointer-tip position variability and a component representing motor abundant joint combinations corresponding to an equivalent pointer-tip position. A Jacobian is required for UCM analysis, typically derived from an analytic model relating joint postures to pointer-tip position. Derivation of the Jacobian is often non-trivial, however, because of the complexity of the system being studied.

View Article and Find Full Text PDF

Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury.

View Article and Find Full Text PDF

Rationale: This case report describes the application of a novel gait retraining approach to an individual with poststroke hemiparesis. The rehabilitation protocol combined a specially designed leg orthosis (the gravity-balanced orthosis), treadmill walking, and functional electrical stimulation to the ankle muscles with the application of motor learning principles.

Case: The participant was a 58-year-old man who had a stroke more than three years before the intervention.

View Article and Find Full Text PDF

This study investigated hemispheric differences in utilizing motor abundance to achieve flexible patterns of joint coordination when reaching to uncertain target locations. Right-handed participants reached with each arm to the same central target when its final location was certain or when there was a 66% probability that its location could change after movement initiation. Use of greater motor abundance was observed when participants reached to the central target under target location uncertainty regardless of the arm used to reach.

View Article and Find Full Text PDF

Gait training of stroke survivors is crucial to facilitate neuromuscular plasticity needed for improvements in functional walking ability. Robot assisted gait training (RAGT) was developed for stroke survivors using active leg exoskeleton (ALEX) and a force-field controller, which uses assist-as-needed paradigm for rehabilitation. In this paradigm undesirable gait motion is resisted and assistance is provided towards desired motion.

View Article and Find Full Text PDF