Publications by authors named "John P Richard"

Glycerol 3-phosphate dehydrogenase catalyzes reversible hydride transfer from glycerol 3-phosphate (G3P) to NAD to form dihydroxyacetone phosphate; from the truncated substrate ethylene glycol to NAD in a reaction activated by the phosphite dianion substrate fragment; and from G3P to the truncated nicotinamide riboside cofactor in a reaction activated by adenosine 5'-diphosphate, adenosine 5'-monophosphate, and ribose 5-phosphate cofactor fragments. The sum of the stabilization of the transition state for GPDH-catalyzed hydride transfer reactions of the whole substrates by the phosphodianion fragment of G3P and the ADP fragment of NAD is 25 kcal/mol. Fourteen kcal/mol of this transition state stabilization is recovered as phosphite dianion and AMP activation of the reactions of the substrate and cofactor fragments.

View Article and Find Full Text PDF

Rate and product data are reported for the solvolysis reactions of twenty-seven mono, di (3,4) and tri (3,4,5) ring-substituted benzyl chlorides. The first order rate constant for solvolysis in 20% acetonitrile in water decrease from = 2.2 s for 4-methoxybenzyl chloride to 1.

View Article and Find Full Text PDF

Kinetic parameters are reported for glycerol 3-phosphate dehydrogenase (GPDH)-catalyzed hydride transfer from the whole substrate glycerol 3-phosphate (G3P) or truncated substrate ethylene glycol (EtG) to NAD, and for activation of the hydride transfer reaction of EtG by phosphite dianion. These kinetic parameters were combined with parameters for enzyme-catalyzed hydride transfer in the microscopic reverse direction to give the reaction equilibrium constants . Hydride transfer from G3P is favored in comparison to EtG because the carbonyl product of the former reaction is stabilized by hyperconjugative electron donation from the -CHR keto substituent.

View Article and Find Full Text PDF

The P168 and I172 side chains sit at the heart of the active site of triosephosphate isomerase (TIM) and play important roles in the catalysis of the isomerization reaction. The phosphodianion of substrate glyceraldehyde 3-phosphate (GAP) drives a conformational change at the TIM that creates a steric interaction with the P168 side chain that is relieved by the movement of P168 that carries the basic E167 side chain into a clamp that consists of the hydrophobic I172 and L232 side chains. The P168A/I172A substitution at TIM from (TIM) causes a large 120,000-fold decrease in for isomerization of GAP that eliminates most of the difference in the reactivity of TIM compared to the small amine base quinuclidinone for deprotonation of catalyst-bound GAP.

View Article and Find Full Text PDF

The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates formate dehydrogenase (FDH) for catalysis of hydride transfer from formate to NAD. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for FDH-catalyzed hydride transfer from formate to NAD.

View Article and Find Full Text PDF

The most important difference between enzyme and small molecule catalysts is that only enzymes utilize the large intrinsic binding energies of nonreacting portions of the substrate in stabilization of the transition state for the catalyzed reaction. A general protocol is described to determine the intrinsic phosphodianion binding energy for enzymatic catalysis of reactions of phosphate monoester substrates, and the intrinsic phosphite dianion binding energy in activation of enzymes for catalysis of phosphodianion truncated substrates, from the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates. The enzyme-catalyzed reactions so-far documented that utilize dianion binding interactions for enzyme activation; and, their phosphodianion truncated substrates are summarized.

View Article and Find Full Text PDF

Four catalytic amino acids at triosephosphate isomerase (TIM) are highly conserved: N11, K13, H95, and E167. Asparagine 11 is the last of these to be characterized in mutagenesis studies. The ND2 side chain atom of N11 is hydrogen bonded to the O-1 hydroxyl of enzyme-bound dihydroxyacetone phosphate (DHAP), and it sits in an extended chain of hydrogen-bonded side chains that includes T75' from the second subunit.

View Article and Find Full Text PDF

The pressure to optimize the enzymatic rate acceleration for adenylate kinase (AK)-catalyzed phosphoryl transfer has led to the evolution of an induced-fit mechanism, where the binding energy from interactions between the protein and substrate adenosyl group is utilized to drive a protein conformational change that activates the enzyme for catalysis. The adenine group of adenosine contributes 11.8 kcal mol to the total ≥14.

View Article and Find Full Text PDF

Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding.

View Article and Find Full Text PDF

The cationic K120 and K204 side chains lie close to the C-2 carbonyl group of substrate dihydroxyacetone phosphate (DHAP) at the active site of glycerol-3-phosphate dehydrogenase (GPDH), and the K120 side chain is also positioned to form a hydrogen bond to the C-1 hydroxyl of DHAP. The kinetic parameters for unactivated and phosphite dianion-activated GPDH-catalyzed reduction of glycolaldehyde and acetaldehyde (AcA) show that the transition state for the former reaction is stabilized by 5 kcal/mole by interactions of the C-1 hydroxyl group with the protein catalyst. The K120A and K204A substitutions at wild-type GPDH result in similar decreases in , but is only affected by the K120A substitution.

View Article and Find Full Text PDF

Salicylate hydroxylase (NahG) has a single redox site in which FAD is reduced by NADH, the O is activated by the reduced flavin, and salicylate undergoes an oxidative decarboxylation by a C(4a)-hydroperoxyflavin intermediate to give catechol. We report experimental results that show the contribution of individual pieces of the FAD cofactor to the observed enzymatic activity for turnover of the whole cofactor. A comparison of the kinetic parameters and products for the NahG-catalyzed reactions of FMN and riboflavin cofactor fragments reveal that the adenosine monophosphate (AMP) and ribitol phosphate pieces of FAD act to anchor the flavin to the enzyme and to direct the partitioning of the C(4a)-hydroperoxyflavin reaction intermediate towards hydroxylation of salicylate.

View Article and Find Full Text PDF

The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate () is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of . The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound . D37G and T100'A substitutions result in 1.

View Article and Find Full Text PDF

The binding of adenosine 5'-triphosphate (ATP) and adenosine 5'-monophosphate (AMP) to adenylate kinase (AdK) drives closure of lids over the substrate adenosyl groups. We test the hypothesis that this conformational change activates AdK for catalysis. The rate constants for adenylate kinase 1 (AdK1)-catalyzed phosphoryl group transfer to AMP, / = 7.

View Article and Find Full Text PDF

Linear free energy relationships (LFERs) for substituent effects on reactions that proceed through similar transition states provide insight into transition state structures. A classical approach to the analysis of LFERs showed that differences in the slopes of Brønsted correlations for addition of substituted alkyl alcohols to ring-substituted 1-phenylethyl carbocations and to the β-galactopyranosyl carbocation intermediate of reactions catalyzed by β-galactosidase provide evidence that the enzyme catalyst modifies the curvature of the energy surface at the saddle point for the transition state for nucleophile addition. We have worked to generalize the use of LFERs in the determination of enzyme mechanisms.

View Article and Find Full Text PDF

The activation barriers Δ for / for the reactions of whole substrates catalyzed by 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, and glucose 6-phosphate isomerase are reduced by 11-13 kcal/mol by interactions between the protein and the substrate phosphodianion. Between 4 and 6 kcal/mol of this dianion binding energy is expressed at the transition state for phosphite dianion activation of the respective enzyme-catalyzed reactions of truncated substrates d-xylonate or d-xylose. These and earlier results from studies on β-phosphoglucomutase, triosephosphate isomerase, and glycerol 3-phosphate dehydrogenase define a cluster of six enzymes that catalyze reactions in glycolysis or of glycolytic intermediates, and which utilize substrate dianion binding energy for enzyme activation.

View Article and Find Full Text PDF

In aqueous solution, biological decarboxylation reactions proceed irreversibly to completion, whereas the reverse carboxylation processes are typically powered by the hydrolysis of ATP. The exchange of the carboxylate of ring-substituted arylacetates with isotope-labeled CO in polar aprotic solvents reported recently suggests a dramatic change in the partition of reaction pathways. Yet, there is little experimental data pertinent to the kinetic barriers for protonation and thermodynamic data on CO capture by the carbanions of decarboxylation reactions.

View Article and Find Full Text PDF

K120 of glycerol 3-phosphate dehydrogenase (GPDH) lies close to the carbonyl group of the bound dihydroxyacetone phosphate (DHAP) dianion. pH rate (pH 4.6-9.

View Article and Find Full Text PDF

Glycerol-3-phosphate dehydrogenase is a biomedically important enzyme that plays a crucial role in lipid biosynthesis. It is activated by a ligand-gated conformational change that is necessary for the enzyme to reach a catalytically competent conformation capable of efficient transition-state stabilization. While the human form (GPDH) has been the subject of extensive structural and biochemical studies, corresponding computational studies to support and extend experimental observations have been lacking.

View Article and Find Full Text PDF

The D37 and T100' side chains of orotidine 5'-monophosphate decarboxylase (OMPDC) interact with the C-3' and C-2' ribosyl hydroxyl groups, respectively, of the bound substrate. We compare the intra-subunit interactions of D37 with the inter-subunit interactions of T100' by determining the effects of the D37G, D37A, T100'G, and T100'A substitutions on the following: (a) and / values for the OMPDC-catalyzed decarboxylations of OMP and 5-fluoroorotidine 5'-monophosphate (FOMP) and (b) the stability of dimeric OMPDC relative to the monomer. The D37G and T100'A substitutions resulted in 2 kcal mol increases in Δ for / for the decarboxylation of OMP, while the D37A and T100'G substitutions resulted in larger 4 and 5 kcal mol increases, respectively, in Δ.

View Article and Find Full Text PDF

A comparison of the values of / for reduction of dihydroxyacetone phosphate (DHAP) by NADH catalyzed by wild type and K120A/R269A variant glycerol-3-phosphate dehydrogenase from human liver (GPDH) shows that the transition state for enzyme-catalyzed hydride transfer is stabilized by 12.0 kcal/mol by interactions with the cationic K120 and R269 side chains. The transition state for the K120A/R269A variant-catalyzed reduction of DHAP is stabilized by 1.

View Article and Find Full Text PDF

Structural and biochemical studies on diverse enzymes have highlighted the importance of ligand-gated conformational changes in enzyme catalysis, where the intrinsic binding energy of the common phosphoryl group of their substrates is used to drive energetically unfavorable conformational changes in catalytic loops, from inactive open to catalytically competent closed conformations. However, computational studies have historically been unable to capture the activating role of these conformational changes. Here, we discuss recent experimental and computational studies, which can remarkably pinpoint the role of ligand-gated conformational changes in enzyme catalysis, even when not modeling the loop dynamics explicitly.

View Article and Find Full Text PDF

We report results of detailed empirical valence bond simulations that model the effect of several amino acid substitutions on the thermodynamic (Δ°) and kinetic activation (Δ) barriers to deprotonation of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) bound to wild-type triosephosphate isomerase (TIM), as well as to the K12G, E97A, E97D, E97Q, K12G/E97A, I170A, L230A, I170A/L230A, and P166A variants of this enzyme. The EVB simulations model the observed effect of the P166A mutation on protein structure. The E97A, E97Q, and E97D mutations of the conserved E97 side chain result in ≤1.

View Article and Find Full Text PDF