The famous French scientist, Emile Roux, was previously discovered to have been secretly married to an English woman, Rose Anna Shedlock, one of the first women medical school students in Britain and Europe. Emile and Rose most likely met while in medical school in Paris, although for very different reasons, neither graduated. It was previously suggested that Rose left medical school after only a few years, although we present new evidence that that she was still a medical student four years later when she would have been near completion.
View Article and Find Full Text PDFChromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP).
View Article and Find Full Text PDFTelomeres, repetitive nucleoprotein complexes that protect chromosomal termini and prevent them from activating inappropriate DNA damage responses (DDRs), shorten with cell division and thus with aging. Here, we characterized the human cellular response to targeted telomeric double-strand breaks (DSBs) in telomerase-positive and telomerase-independent alternative lengthening of telomere (ALT) cells, specifically in G1 phase. Telomeric DSBs in human G1 cells elicited early signatures of a DDR; however, localization of 53BP1, an important regulator of resection at broken ends, was not observed at telomeric break sites.
View Article and Find Full Text PDFDNA polymerase theta (POLQ)-mediated end joining (TMEJ) is a distinct pathway for mediating DNA double-strand break (DSB) repair. TMEJ is required for the viability of -mutated cancer cells. It is crucial to identify tumors that rely on POLQ activity for DSB repair, because such tumors are defective in other DSB repair pathways and have predicted sensitivity to POLQ inhibition and to cancer therapies that produce DSBs.
View Article and Find Full Text PDFIn mammals, DNA double-strand breaks (DSBs) are primarily repaired by classical non-homologous end joining (C-NHEJ), although homologous recombination repair and alternative NHEJ (A-NHEJ), which involve DSB processing, can also occur. These pathways are tightly regulated to maintain chromosome integrity. The ends of chromosomes, called telomeres, contain telomeric DNA that forms a cap structure in cooperation with telomeric proteins to prevent the activation of the DNA damage response and chromosome fusion at chromosome termini.
View Article and Find Full Text PDFTelomeres are nucleoprotein structures that are required to protect chromosome ends. Dysfunctional telomeres are recognized as DNA double-strand breaks (DSBs), and elicit the activation of a DNA damage response (DDR). We have previously reported that DSBs near telomeres are poorly repaired, resulting in a high frequency of large deletions and gross chromosome rearrangements (GCRs).
View Article and Find Full Text PDFReplication stress causes DNA damage at fragile sites in the genome. DNA damage at telomeres can initiate breakage-fusion-bridge cycles and chromosome instability, which can result in replicative senescence or tumor formation. Little is known about the extent of replication stress or telomere dysfunction in human embryonic stem cells (hESCs).
View Article and Find Full Text PDFThe caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability in cancer cells that lack cell cycle checkpoints. We have previously reported that I-SceI endonuclease-induced DSBs near telomeres in a human cancer cell line are much more likely to generate large deletions and gross chromosome rearrangements (GCRs) than interstitial DSBs, but found no difference in the frequency of I-SceI-induced small deletions at interstitial and subtelomeric DSBs.
View Article and Find Full Text PDFThe exquisite sensitivity of mitotic cancer cells to ionizing radiation (IR) underlies an important rationale for the widely used fractionated radiation therapy. However, the mechanism for this cell cycle-dependent vulnerability is unknown. Here we show that treatment with IR leads to mitotic chromosome segregation errors in vivo and long-lasting aneuploidy in tumour-derived cell lines.
View Article and Find Full Text PDFPrevious work has shown that high charge and energy particle irradiation of human cells evokes a mutagenic repair phenotype, defined by increased mutagenic repair of new double-strand breaks that are introduced enzymatically, days or weeks after the initial irradiation. The effect was seen originally with 600 MeV/u (56)Fe particles, which have a linear energy transfer (LET) value of 174 keV/μm, but not with X rays or γ rays (LET ≤ 2 keV/μm). To better define the radiation quality dependence of the phenomenon, we tested two ions with intermediate LET values, 1,000 MeV/u (48)Ti (LET = 108 keV/μm) and 300 MeV/u (28)Si (LET = 69 keV/μm).
View Article and Find Full Text PDFUnlabelled: Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown.
View Article and Find Full Text PDFThe carcinogenic risk of high-charge and energy (HZE) particle exposure arises from its ability to both induce complex DNA damage and from its ability to evoke deleterious, non-DNA targeted effects. We investigate here whether these nontargeted effects involve dysregulation of double-strand break repair, such that a history of HZE exposure heightens the risks from future injury. We used a new human cell reporter line, in which expression of the I-SceI meganuclease stimulates both translocations on different chromosomes, and deletions on the same chromosome.
View Article and Find Full Text PDFTelomeres distinguish chromosome ends from double-strand breaks (DSBs) and prevent chromosome fusion. However, telomeres can also interfere with DNA repair, as shown by a deficiency in nonhomologous end joining (NHEJ) and an increase in large deletions at telomeric DSBs. The sensitivity of telomeric regions to DSBs is important in the cellular response to ionizing radiation and oncogene-induced replication stress, either by preventing cell division in normal cells, or by promoting chromosome instability in cancer cells.
View Article and Find Full Text PDFThe ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide.
View Article and Find Full Text PDFTelomerase serves to maintain telomeric repeat sequences at the ends of chromosomes. However, telomerase can also add telomeric repeat sequences at DNA double-strand breaks (DSBs), a process called chromosome healing. Here, we employed a method of inducing DSBs near telomeres to query the role of two proteins, PIF1 and NBS1, in chromosome healing in mammalian cells.
View Article and Find Full Text PDFThe ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer.
View Article and Find Full Text PDFWe have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites.
View Article and Find Full Text PDFCancer cells commonly have a high rate of telomere loss, even when expressing telomerase, contributing to chromosome instability and tumor cell progression. This review addresses the hypothesis that this high rate of telomere loss results from a combination of four factors. The first factor is an increase in the frequency of double-strand breaks (DSB) at fragile sites in cancer cells due to replication stress.
View Article and Find Full Text PDFThe ends of chromosomes, called telomeres, are composed of a DNA repeat sequence and associated proteins, which prevent DNA degradation and chromosome fusion. We have previously used plasmid sequences integrated adjacent to a telomere to demonstrate that mammalian telomeres suppress gene expression, called telomere position effect (TPE). We have also shown that subtelomeric regions are highly sensitive to double-strand breaks, leading to chromosome instability, and that this instability can be prevented by the addition of a new telomere to the break, a process called chromosome healing.
View Article and Find Full Text PDFWe previously reported that a single DNA double-strand break (DSB) near a telomere in mouse embryonic stem cells can result in chromosome instability. We have observed this same type of instability as a result of spontaneous telomere loss in human tumor cell lines, suggesting that a deficiency in the repair of DSBs near telomeres has a role in chromosome instability in human cancer. We have now investigated the frequency of the chromosome instability resulting from DSBs near telomeres in the EJ-30 human bladder carcinoma cell line to determine whether subtelomeric regions are sensitive to DSBs, as previously reported in yeast.
View Article and Find Full Text PDFTelomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have previously demonstrated that double-strand breaks near telomeres in mammalian cells result in either the addition of a new telomere at the site of the break, termed chromosome healing, or sister chromatid fusion that initiates chromosome instability. In the present study, we have investigated the role of telomerase in chromosome healing and the importance of chromosome healing in preventing chromosome instability.
View Article and Find Full Text PDFTelomeres are protective structures present at the ends of linear chromosomes and consist of simple repeating-DNA sequences and specialized proteins [1, 2]. Integrity of the telomeres is important in maintaining genome stability[1-6]. RNA interference(RNAi) involves short double-stranded RNA (21-23 nucleotides long), termed short interference RNA(siRNA), resulting in the downregulation of genes with cognate sequences [7-9].
View Article and Find Full Text PDFIn addition to their role in protecting the ends of chromosomes, telomeres also influence the expression of adjacent genes, a process called telomere-position effect. We previously reported that the neo and HSV-tk transgenes located adjacent to telomeres in mouse embryonic stem cells are initially expressed at low levels and then become gradually silenced upon passage in culture through a process involving DNA methylation. We also reported extensive DNA methylation in these telomeric transgenes in three different tissues isolated from mice generated from one of these embryonic stem cell clones.
View Article and Find Full Text PDFThe ataxia-telangiectasia group D complementing gene, ATDC, is located at 11q23, where loss of heterozygosity (LOH) is frequently observed in many kinds of cancers including breast cancer. Underexpression of ATDC in breast and prostate cancer has been reported using serial analysis of gene expression (SAGE) and DNA microarray analysis. We previously reported that SV-40-transformation down-regulates the expression of ATDC.
View Article and Find Full Text PDF