Gauge fields in condensed matter physics give rise to nonreciprocal and topological transport phenomena and exotic electronic states. Nanomechanical systems are applied as sensors and in signal processing, and feature strong nonlinearities. Gauge potentials acting on such systems could induce quantum Hall physics for phonons at the nanoscale.
View Article and Find Full Text PDFBreaking the symmetry of electromagnetic wave propagation enables important technological functionality. In particular, circulators are nonreciprocal components that can route photons directionally in classical or quantum photonic circuits and offer prospects for fundamental research on electromagnetic transport. Developing highly efficient circulators thus presents an important challenge, especially to realise compact reconfigurable implementations that do not rely on magnetic fields to break reciprocity.
View Article and Find Full Text PDFMechanical resonators are ubiquitous in modern information technology. With the possibility of coupling them to electromagnetic and plasmonic modes, they hold promise as the key building blocks in future quantum information technology. Graphene-based resonators are of interest for technological applications due to their high resonant frequencies, multiple mechanical modes and low mass.
View Article and Find Full Text PDFWe study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K.
View Article and Find Full Text PDFWe study InAs nanowire resonators fabricated on sapphire substrate with a local gate configuration. The key advantage of using an insulating sapphire substrate is that it results in a reduced parasitic capacitance, thus allowing both wide bandwidth actuation and detection using a network analyzer as well as signal detection at room temperature. Both in-plane and out-of-plane vibrational modes of the nanowire can be driven and the nonlinear response of the resonators studied.
View Article and Find Full Text PDF