Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models. Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons.
View Article and Find Full Text PDFFront Cell Neurosci
November 2022
Retinal detachment is a sight-threatening disorder, which occurs when the photoreceptors are separated from their vascular supply. The aim of the present study was to shed light on photoreceptor energy metabolism during experimental detachment in rats. Retinal detachment was induced in the eyes of rats subretinal injection of sodium hyaluronate.
View Article and Find Full Text PDFPurpose: The purpose of this study was to determine whether rodent lacrimal glands (LGs) represent a suitable surrogate for human tissue in bio-engineering research, we undertook a meticulous histological and histochemical comparison of these two tissues.
Methods: Histological techniques and immunohistochemistry were used to compare the structure of adult human and rat LG tissues and the expression of key functional tissue elements.
Results: Compared with humans, the rat LG is comprised of much more densely packed acini which are devoid of an obvious central lumen.
Objectives: To establish cultures of human lacrimal gland from patient-derived, biopsy-sized, tissue specimens.
Methods: Tissue was obtained after surgical removal from patients without dry eye disease undergoing routine procedures. Samples were subjected to mechanical and enzymatic digestion and resulting cell suspensions were plated onto collagen-coated glass coverslips and grown for up to 21 days.
Retinal detachment is a vision-threatening condition, which occurs when the neurosensory retina is separated from its blood supply. The main purpose of this study was to examine the effect of experimental retinal detachment in rats on cone photoreceptors. Retinal detachment was induced in the eyes of rats via subretinal injection of sodium hyaluronate.
View Article and Find Full Text PDFBackground: To treat healthy retinal pigmented epithelium (RPE) with the 3-ns retinal rejuvenation therapy (2RT) laser and to investigate the subsequent wound-healing response of these cells.
Methods: Primary rat RPE cells were treated with the 2RT laser at a range of energy settings. Treated cells were fixed up to 7 days post-irradiation and assessed for expression of proteins associated with wound-healing.
Objectives: This study sought to evaluate the effect of weight loss on the atrial substrate for atrial fibrillation (AF).
Background: Whether weight loss can reverse the atrial substrate of obesity is not known.
Methods: Thirty sheep had sustained obesity induced by ad libitum calorie-dense diet over 72 weeks.
Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate.
View Article and Find Full Text PDFTransl Vis Sci Technol
March 2020
Purpose: Photobiomodulation (PBM) refers to therapeutic irradiation of tissue with low-energy, 630- to 1000-nm wavelength light. An increasing body of evidence supports a beneficial effect of PBM in retinal disorders. To date, most studies have utilized light-emitting diode irradiation sources.
View Article and Find Full Text PDFEnergy metabolism refers to the processes by which life transfers energy to do cellular work. The retina's relatively large energy demands make it vulnerable to energy insufficiency. In addition, evolutionary pressures to optimize human vision have been traded against retinal ganglion cell bioenergetic fragility.
View Article and Find Full Text PDFAims/hypothesis: Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME.
View Article and Find Full Text PDFRecent studies suggest cone degeneration in retinitis pigmentosa (RP) may result from intracellular energy depletion. We tested the hypothesis that cones die when depleted of energy by examining the effect of two bioenergetic, nutraceutical agents on cone survival. The study had three specific aims: firstly, we, studied the neuroprotective efficacies of glucose and creatine in an model of RP.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2019
Purpose: To investigate the neuroprotective properties of creatine in the retina using in vitro and in vivo models of injury.
Methods: Two different rat retinal culture systems (one containing retinal ganglion cells [RGC] and one not) were subjected to either metabolic stress, via treatments with the mitochondrial complex IV inhibitor sodium azide, or excitotoxic stress, via treatment with N-methyl-D-aspartate for 24 hours, in the presence or absence of creatine (0.5, 1.
Background: The Pde6brd1 (Rd1) mouse is widely used as a murine model for human retinitis pigmentosa. Understanding the spatio-temporal patterns of cone degeneration is important for evaluating potential treatments. In the present study we performed a systematic characterization of the spatio-temporal patterns of S- and M/L-opsin cone outer segment and cell body degeneration in Rd1 mice, described the distribution and proportion of dual cones in Rd1 retinas, and examined the kinetics of microglial activation during the period of cone degeneration.
View Article and Find Full Text PDFMüller cells (MCs), the major type of glial cell of the vertebrate retina, have a vital role in retinal physiology and pathology. They provide structural and functional support for retinal neurons, including photoreceptors, and are implicated in various retinal diseases. Primary and immortalized MCs are important experimental tools for MC research.
View Article and Find Full Text PDFThe activity of mitogen-activated protein kinases (MAPKs) is largely controlled by addition or removal of phosphate groups, which are carried out by kinase or phosphatase enzymes, respectively. Determining the phosphorylation status of MAPK isoenzymes, therefore, aids elucidation of the physiological and pathological roles of this enzyme. In practical terms, however, end-point procurement of appropriate experimental tissues produces conditions where MAPK phosphorylation status can rapidly alter, thus giving rise to aberrant data.
View Article and Find Full Text PDFMüller cells (MCs) play a crucial role in the retina, and cultured MC lines are an important tool with which to study MC function. Transformed MC lines have been widely used; however, the transformation process can also lead to unwanted changes compared to the primary cells from which they were derived. To provide an alternative experimental tool, a novel monoclonal spontaneously immortalized rat Müller cell line, SIRMu-1, was derived from primary rat MCs and characterized.
View Article and Find Full Text PDFPurpose: Understanding the energetics of retinal neurons and glia is crucial for developing therapies for diseases that feature deficits in nutrient or oxygen availability. Herein, we performed a detailed characterization of the distribution and activity of mitochondrial proteins in the vascularized retinas of rat and marmoset, and the avascular retinas of rabbit and guinea pig. Further, we delineated expression of ubiquitous mitochondrial creatine kinase (uMtCK).
View Article and Find Full Text PDFBackground: Glaucoma is a leading cause of irreversible blindness manifesting as an age-related, progressive optic neuropathy with associated retinal ganglion cell (RGC) loss. Mitogen-activated protein kinases (MAPKs: p42/44 MAPK, SAPK/JNK, p38 MAPK) are activated in various retinal disease models and likely contribute to the mechanisms of RGC death. Although MAPKs play roles in the development of retinal pathology, their action in the optic nerve head (ONH), where the initial insult to RGC axons likely resides in glaucoma, remains unexplored.
View Article and Find Full Text PDFThe vascular hypothesis of glaucoma proposes that retinal ganglion cell axons traversing the optic nerve head (ONH) undergo oxygen and nutrient insufficiency as a result of compromised local blood flow, ultimately leading to their degeneration. To date, evidence for the hypothesis is largely circumstantial. Herein, we made use of an induced rat model of glaucoma that features reproducible and widespread axonal transport disruption at the ONH following chronic elevation of intraocular pressure.
View Article and Find Full Text PDFThere is increasing recognition that visual performance is impaired in early stages of Alzheimer's disease (AD); however, no consensus exists as to the mechanisms underlying this visual dysfunction, in particular regarding the timing, nature, and extent of retinal versus cortical pathology. If retinal pathology presents sufficiently early, it offers great potential as a source of novel biomarkers for disease diagnosis. The current project utilized an array of immunochemical and molecular tools to perform a characterization of retinal pathology in the early stages of disease progression using a well-validated mouse model of AD (APPSWE/PS1ΔE9).
View Article and Find Full Text PDFActa Ophthalmol
December 2016
Retinitis pigmentosa (RP) is an inherited condition that features degeneration of rod and cone photoreceptors. In all forms of RP, the genetic mutation is expressed exclusively in rods; however, cones die too. The secondary death of cones in RP remains somewhat mysterious.
View Article and Find Full Text PDFBackground And Objectives: Subvisual retinal lasers necessarily cause clinically invisible lesions, hence, they could intentionally or inadvertently be targeted at precisely the same or an overlapping location during repeat laser treatment. Herein, we investigated the structural integrity and cellular responses of localized re-treatment using a nanosecond laser (2RT) currently in trials for early age-related macular degeneration.
Materials And Methods: Rats were randomly assigned to one of five groups: sham, subvisual 2RT, subvisual 2RT re-treatment, visual effect 2RT, visual effect 2RT re-treatment.