Publications by authors named "John P M Sedelaar"

Castration-resistant prostate cancer (CRPC) is defined by resistance of the tumor to androgen deprivation therapy (ADT). Several molecular changes, particularly in the AR signaling cascade, have been described that may explain ADT resistance. The variety of changes may also explain why the response to novel therapies varies between patients.

View Article and Find Full Text PDF

Objective: To assess the cost-effectiveness of a new urinary biomarker-based risk score (SelectMDx; MDxHealth, Inc., Irvine, CA, USA) to identify patients for transrectal ultrasonography (TRUS)-guided biopsy and to compare this with the current standard of care (SOC), using only prostate-specific antigen (PSA) to select for TRUS-guided biopsy.

Materials And Methods: A decision tree and Markov model were developed to evaluate the cost-effectiveness of SelectMDx as a reflex test vs SOC in men with a PSA level of >3 ng/mL.

View Article and Find Full Text PDF

Purpose: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are responsible for this continued activity, which influences the efficacy of prostate cancer treatment.

View Article and Find Full Text PDF

Current endocrine treatment for advanced prostate cancer does not result in a complete ablation of adrenal androgens. Adrenal androgens can be metabolized by prostate cancer cells, which is one of the mechanisms associated with progression to castration-resistant prostate cancer (CRPC). Aldo-keto reductase family 1 member C3 (AKR1C3) is a steroidogenic enzyme that plays a crucial role in the conversion of adrenal androgen dehydroepiandrosterone (DHEA) into high-affinity ligands for the androgen receptor (testosterone [T] and dihydrotestosterone [DHT]).

View Article and Find Full Text PDF

Considerable levels of testosterone and dihydrotestosterone (DHT) are found in prostate cancer (PCa) tissue after androgen deprivation therapy. Treatment of surviving cancer-initiating cells and the ability to metabolize steroids from precursors may be the keystones for the appearance of recurrent tumors. To study this hypothesis, we assessed the expression of several steroidogenic enzymes and stem cell markers in clinical PCa samples and cell cultures during androgen depletion.

View Article and Find Full Text PDF