Publications by authors named "John P Lowry"

A modified development protocol and concomitant characterisation of a first generation biosensor for the detection of brain extracellular d-serine is reported. Functional parameters important for neurochemical monitoring, including sensor sensitivity, O interference, selectivity, shelf-life and biocompatibility were examined. Construction and development involved the enzyme d-amino acid oxidase (DAAO), utilising a dip-coating immobilisation method employing a new extended drying approach.

View Article and Find Full Text PDF

Background: Autism spectrum disorders (ASD) are predominantly neurodevelopmental and largely genetically determined. However, there are human data supporting the idea that fever can improve symptoms in some individuals, but those data are limited and there are almost no data to support this from animal models. We aimed to test the hypothesis that elevated body temperature would improve function in two animal models of ASD.

View Article and Find Full Text PDF

A polymer/enzyme composite biosensor for monitoring neurochemical glutamate was performance optimised in vitro for sensitivity, selectivity and stability. This first generation Pt/glutamate oxidase-based sensor displayed appropriate sensitivity (90.4 ± 2.

View Article and Find Full Text PDF

Oxygen is of critical importance to tissue viability and there is increasing demand for its reliable real-time clinical monitoring in order to prevent, diagnose, and treat several pathological disorders, including hypoxia, stroke and reperfusion injury. Herein we report the development and characterisation of a prototype clinical O2 sensor, and its validation in vivo, including proof-of-concept monitoring in patients undergoing surgery for carpal tunnel release. An integrated platinum-based microelectrochemical device was custom designed and controlled using a miniaturised telemetry-operated single channel clinical potentiostat.

View Article and Find Full Text PDF

Systemic infection triggers a spectrum of metabolic and behavioral changes, collectively termed sickness behavior, which while adaptive, can affect mood and cognition. In vulnerable individuals, acute illness can also produce profound, maladaptive, cognitive dysfunction including delirium, but our understanding of delirium pathophysiology remains limited. Here, we used bacterial lipopolysaccharide (LPS) in female C57BL/6J mice and acute hip fracture in humans to address whether disrupted energy metabolism contributes to inflammation-induced behavioral and cognitive changes.

View Article and Find Full Text PDF

Measuring the concentration of multiple chemical components in a low-volume aqueous mixture by Raman spectroscopy has received significant interest in the literature. All of the contributions to date focus on the design of optical systems that facilitate the recording of spectra with high signal-to-noise ratio by collecting as many Raman scattered photons as possible. In this study, the confocal Raman microscope setup is investigated for multicomponent analysis.

View Article and Find Full Text PDF

Activity-dependent changes in hippocampal energy consumption have largely been determined using microdialysis. However, real-time recordings of brain energy consumption can be more accurately achieved using amperometric sensors, allowing for sensitive real-time monitoring of concentration changes. Here, we test the theory that systemic pre-treatment with glucose in rats prevents activity-dependent decreases in hippocampal glucose levels and thus enhances their performance in a spontaneous alternation task.

View Article and Find Full Text PDF

Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states.

View Article and Find Full Text PDF

Non-competitive NMDA receptor antagonists are known to induce psychosis-like symptoms in rodents. Administration of such compounds cause behavioural effects such as memory impairment and hyperlocomotion. Additionally, drugs such as phencyclidine (PCP), ketamine and MK-801 all cause distinctive increases in striatal local field potential (LFP) in the high frequency oscillation (HFO) band in the power spectrum (140-180 Hz).

View Article and Find Full Text PDF

A first generation Pt-based polymer enzyme composite biosensor developed for real-time neurochemical monitoring was characterised in vivo for sensitive and selective detection of choline. Confirmation that the sensor responds to changes in extracellular choline was achieved using local perfusion of choline which resulted in an increase in current, and the acetylcholinesterase inhibitor neostigmine which produced a decrease. Interference by electroactive species was tested using systemic administration of sodium ascorbate which produced a rapid increase in extracellular levels before gradually returning towards baseline over several hours.

View Article and Find Full Text PDF

The hippocampus plays a vital role in learning and memory and is susceptible to damage following hypoglycaemic shock. The effect of an acute administration of insulin on hippocampal function has been described in terms of behavioural deficits but its effect on hippocampal oxygen and glucose is unclear. Glucose oxidase biosensors (detecting glucose) and carbon paste electrodes (detecting oxygen) were implanted into the hippocampus of Sprague Dawley rats.

View Article and Find Full Text PDF

Prediction error signals are fundamental to learning. Here, in mice, we show that aversive prediction signals are found in the hemodynamic responses and theta oscillations recorded from the basolateral amygdala. During fear conditioning, amygdala responses evoked by footshock progressively decreased, whereas responses evoked by the auditory cue that predicted footshock concomitantly increased.

View Article and Find Full Text PDF

Typical and atypical antipsychotics have been shown to alleviate N-methyl-D-aspartate (NMDA) receptor antagonist-induced BOLD signals in healthy humans and animals to differing degrees; factors that might relate to their different molecular mechanisms and clinical profiles. Recent studies have also extended these investigations to the analysis of resting state functional connectivity measures of BOLD signals in different brain regions. Using constant potential amperometry, we examined the effects of the NMDA receptor antagonist S-(+)-ketamine on tissue oxygen levels in medial prefrontal cortex (mPFC) and medial ventral striatum (mVS), and temporal coherence of low-frequency oxygen fluctuations between these regions in freely moving rats.

View Article and Find Full Text PDF

Using environmental cues for the prediction of future events is essential for survival. Such cue-outcome associations are thought to depend on mesolimbic circuitry involving the nucleus accumbens (NAc) and prefrontal cortex (PFC). Several studies have identified roles for both NAc and PFC in the expression of stable goal-directed behaviors, but much remains unknown about their roles during learning of such behaviors.

View Article and Find Full Text PDF

Background: Mathematical models of the interactions between alphasynuclein (αS) and reactive oxygen species (ROS) predict a systematic and irreversible switching to damagingly high levels of ROS after sufficient exposure to risk factors associated with Parkinson's disease (PD).

Objectives: We tested this prediction by continuously monitoring real-time changes in neurochemical levels over periods of several days in animals exposed to a toxin known to cause Parkinsonian symptoms.

Methods: Nitric oxide (NO) sensors were implanted in the brains of freely moving rats and the NO levels continuously recorded while the animals were exposed to paraquat (PQ) injections of various amounts and frequencies.

View Article and Find Full Text PDF

Glucose, O2, and nitric oxide (NO) were monitored in real time in the prefrontal cortex of freely moving animals using microelectrochemical sensors following phencyclidine (PCP) administration. Injection of saline controls produced a decrease in glucose and increases in both O2 and NO. These changes were short-lived and typical of injection stress, lasting ca.

View Article and Find Full Text PDF

Amperometric sensors for oxygen and glucose allow for real time recording from the brain in freely-moving animals. These sensors have been used to detect activity- and drug-induced changes in metabolism in a number of brain regions but little attention has been given over to the hippocampus despite its importance in cognition and disease. Sensors for oxygen and glucose were co-implanted into the hippocampus and allowed to record for several days.

View Article and Find Full Text PDF

A reliable method of directly measuring endogenously generated nitric oxide (NO) in real-time and in various brain regions is presented. An extensive characterisation of a previously described amperometric sensor has been carried out in the prefrontal cortex and nucleus accumbens of freely moving rats. Systemic administration of saline caused a transient increase in signal from baseline levels in both the prefrontal cortex (13 ± 3pA, n=17) and nucleus accumbens (12 ± 3pA, n=8).

View Article and Find Full Text PDF

The effects of aripiprazole, (-)-(3-hydroxyphenyl)-N-n-propylpiperidine ((-)-3-PPP) and quinpirole on single and multiple pulse stimulated dopamine release were investigated using the technique of fast cyclic voltammetry (FCV) in isolated rat striatal slices. Aripiprazole and (-)-3-PPP had no significant effect on single pulse dopamine release at concentrations from 10nM to 10μM indicating low agonist activity. The compounds failed to potentiate 5 pulse stimulated release of dopamine although inhibitory effects were seen at 10μM for aripiprazole.

View Article and Find Full Text PDF

Real-time in vivo oxygen amperometry, a technique that allows measurement of regional brain tissue oxygen (O(2)) has been previously shown to bear relationship to the BOLD signal measured with functional magnetic resonance imaging (fMRI) protocols. In the present study, O(2) amperometry was applied to the study of reward processing in the rat nucleus accumbens to validate the technique with a behavioural process known to cause robust signals in human neuroimaging studies. After acquisition of a cued-lever pressing task a robust increase in O(2) tissue levels was observed in the nucleus accumbens specifically following a correct lever press to the rewarded cue.

View Article and Find Full Text PDF

Neuronal activity elicits metabolic and vascular responses, during which oxygen is first consumed and then supplied to the tissue via an increase in cerebral blood flow. Understanding the spatial and temporal dynamics of blood and tissue oxygen (To₂) responses following neuronal activity is crucial for understanding the physiological basis of functional neuroimaging signals. However, our knowledge is limited because previous To₂ measurements have been made at low temporal resolution (>100 ms).

View Article and Find Full Text PDF

In vitro characterisation results for O(2) reduction at Pt-based microelectrodes are presented and compared with those for carbon-paste electrodes (CPEs). Cyclic voltammetry indicates a potential of -650 mV vs. SCE is required for cathodic reduction at both electrode types, and calibration experiments at this potential revealed a significantly higher sensitivity for Pt (-0.

View Article and Find Full Text PDF

Tissue O₂ can be monitored using a variety of electrochemical techniques and electrodes. In vitro and in vivo characterisation studies for O₂ reduction at carbon paste electrodes (CPEs) using constant potential amperometry (CPA) are presented. Cyclic voltammetry indicated that an applied potential of -650 mV is required for O₂ reduction at CPEs.

View Article and Find Full Text PDF

Traditionally, the function of the hippocampus (HPC) has been viewed in unitary terms, but there is growing evidence that the HPC is functionally differentiated along its septotemporal axis. Lesion studies in rodents and functional brain imaging in humans suggest a preferential role for the septal HPC in spatial learning and a preferential role for the temporal HPC in anxiety. To better enable cross-species comparison, we present an in vivo amperometric technique that measures changes in brain tissue oxygen at high temporal resolution in freely-moving rats.

View Article and Find Full Text PDF

Long-term in-vivo electrochemistry (LIVE) enables real-time monitoring and measurement of brain metabolites. In this study we have simultaneously obtained blood oxygenation level dependent (BOLD) fMRI and amperometric tissue O(2) data from rat cerebral cortex, during both increases and decreases in inspired O(2) content. BOLD and tissue O(2) measurements demonstrated close correlation (r=0.

View Article and Find Full Text PDF