Publications by authors named "John P Klingler"

Aphids, including the bluegreen aphid (BGA; Acyrthosiphon kondoi), are important pests in agriculture. Two BGA resistance genes have been identified in the model legume Medicago truncatula, namely AKR (Acyrthosiphon kondoi resistance) and AIN (Acyrthosiphon induced necrosis). In this study, progeny derived from a cross between a resistant accession named Jester and a highly susceptible accession named A20 were used to study the interaction between the AKR and AIN loci with respect to BGA performance and plant response to BGA infestation.

View Article and Find Full Text PDF

Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)].

View Article and Find Full Text PDF

The endosperm of cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood.

View Article and Find Full Text PDF

Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are model species with a suite of resources available to help dissect the mechanism underlying plant-aphid interactions. A previous study focused on monogenic and relatively strong resistance in M.

View Article and Find Full Text PDF

Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7].

View Article and Find Full Text PDF

Quality protein maize (QPM) is a high lysine-containing corn that is based on genetic modification of the opaque2 (o2) mutant. In QPM, modifier genes convert the starchy endosperm of o2 to the vitreous phenotype of wild type maize. There are multiple, unlinked o2 modifier loci (Opm) in QPM and their nature and mode of action are unknown.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone's activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell.

View Article and Find Full Text PDF

Biotic stress in plants frequently induces a hypersensitive response (HR). This distinctive reaction has been studied intensively in several pathosystems and has shed light on the biology of defence signalling. Compared with microbial pathogens, relatively little is known about the role of the HR in defence against insects.

View Article and Find Full Text PDF

Aphids occupy a niche comprising two conceptual realms: a micron-scale feeding site beneath the plant surface, in which a syringe-like appendage mediates chemical exchange with a specific plant cell type; and the larger realm of a metazoan with sensory organs, a nervous system, and behavior, all responsive to the condition of the host plant and the broader environment. The biology that connects these realms is not well understood, but new details are emerging with the help of genomic tools. The power of these tools is set to increase substantially now that the first genome of an aphid is being sequenced and annotated.

View Article and Find Full Text PDF

To achieve a thorough understanding of plant-aphid interactions, it is necessary to investigate in detail both the plant and insect side of the interaction. The pea aphid (PA; Acyrthosiphon pisum) has been selected by an international consortium as the model species for genetics and genomics studies, and the model legume Medicago truncatula is a host of this aphid. In this study, we identified resistance to PA in a M.

View Article and Find Full Text PDF

Aphids are major insect pests of plants that feed directly from the phloem. We used the model legume Medicago truncatula Gaert. (barrel medic) to elucidate host resistance to aphids and identified a single dominant gene which confers resistance to Acyrthosiphon kondoi Shinji (bluegreen aphid).

View Article and Find Full Text PDF

Host resistance to aphids is poorly understood. Medicago truncatula, a model legume and cultivated pasture species, was used to elucidate defense against two aphid species, Therioaphis trifolii f. maculata (spotted alfalfa aphid, SAA) and Acyrthosiphon kondoi (bluegreen aphid, BGA).

View Article and Find Full Text PDF