Purpose: Worldwide, cardiovascular disease is the leading cause of hospitalization and death. Recently, the use of magnetizable nanoparticles for medical drug delivery has received much attention for potential treatment of both cancer and cardiovascular disease. However, proper understanding of the interacting magnetic field forces and the hydrodynamics of blood flow is needed for effective implementation.
View Article and Find Full Text PDFPurpose: The aim of the present work is to present the development of a computational two-way coupled (fluid and particle coupled) magnetic nanoparticle targeting model to investigate the efficacy of magnetic drug targeting (MDT) in a patient-specific diseased left carotid bifurcation artery. MDT of therapeutic agents using multifunctional carrier particles has the potential to provide effective treatment of both cancer and cardiovascular disease by enabling a variety of localized treatment and diagnostic modalities while minimizing side effects.
Methods: A computational model is developed to analyze pulsatile blood flow, particle motion, and particle capture efficiency in a diseased left carotid bifurcation artery using the magnetic properties of magnetite (FeO) and equations describing the magnetic forces acting on particles produced by an external cylindrical electromagnetic coil.
The ultimate goal of the present work is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present work an experimental and digital computational fluid dynamics (CFD) arterial model consisting of a number of major arteries (aorta, carotid bifurcation, cranial, femoral, jejunal, and subclavian arteries) were fabricated to study: (1) the effects of local hemodynamics (flow parameters) on global hemodynamics (2) the effects of transition from bedrest to upright position (postural change) on hemodynamics, and (3) diffusion of dye (medical drug diffusion simulation) in the arterial system via experimental and numerical techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2013
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy.
View Article and Find Full Text PDF