To understand how global warming will impact biodiversity, we need to pay attention to those species with higher vulnerability. However, to assess vulnerability, we also need to consider the thermoregulatory mechanisms, body size, and thermal tolerance of species. Studies addressing thermal tolerance on small ectotherms have mostly focused on insects, while other arthropods, such as arachnids remain understudied.
View Article and Find Full Text PDFUnderstanding and predicting population responses to climate change is a crucial challenge. A key component of population responses to climate change are cases in which focal biological rates (e.g.
View Article and Find Full Text PDFFunctional responses describe foraging rates across prey densities and underlie many fundamental ecological processes. Most functional response knowledge comes from simplified lab experiments, but we do not know whether these experiments accurately represent foraging in nature. In addition, the difficulty of conducting multispecies functional response experiments means that it is unclear whether interaction strengths are weakened in the presence of multiple prey types.
View Article and Find Full Text PDFThe effects of warming on ecological communities emerge from a range of potentially asymmetric impacts on individual physiology and development. Understanding these responses, however, is limited by our ability to connect mechanisms or emergent patterns across the many processes that drive variation in demography. Further complicating this understanding is the gain or loss of predators to many communities, which may interact with changes in temperature to drive community change.
View Article and Find Full Text PDFChemotaxis is widespread across many taxa and often aids resource acquisition or predator avoidance. Species interactions can modify the degree of movement facilitated by chemotaxis. In this study, we investigated the influence of symbionts on Paramecium bursaria's chemotactic behavior toward chloroviruses.
View Article and Find Full Text PDFViruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests.
View Article and Find Full Text PDFNiche differentiation and intraguild predation (IGP) can allow ecologically similar species to coexist, although it is unclear which coexistence mechanism predominates in consumer communities. Until now, a limited ability to quantify diets from metabarcoding data has precluded the use of sequencing data to determine the relative importance of these mechanisms. Here, we pair a recent metabarcoding quantification approach with stable isotope analysis to examine diet composition in a wolf spider community.
View Article and Find Full Text PDFViruses impact host cells and have indirect effects on ecosystem processes. Plankton such as ciliates can reduce the abundance of virions in water, but whether virus consumption translates into demographic consequences for the grazers is unknown. Here, we show that small protists not only can consume viruses they also can grow and divide given only viruses to eat.
View Article and Find Full Text PDFPredator feeding rates (described by their functional response) must saturate at high prey densities. Although thousands of manipulative functional response experiments show feeding rate saturation at high densities under controlled conditions, it remains unclear how saturated feeding rates are at natural prey densities. The general degree of feeding rate saturation has important implications for the processes determining feeding rates and how they respond to changes in prey density.
View Article and Find Full Text PDFStochastic processes such as genetic drift may hinder adaptation, but the effect of such stochasticity on evolution via its effect on ecological dynamics is poorly understood. Here we evaluate patterns of adaptation in a population subject to variation in demographic stochasticity. We show that stochasticity can alter population dynamics and lead to evolutionary outcomes that are not predicted by classic eco-evolutionary modeling approaches.
View Article and Find Full Text PDFFunctional responses are central to predator-prey dynamics and describe how predation varies with prey abundance. Functional responses often are measured without regard to prey size (i.e.
View Article and Find Full Text PDFPredator functional responses describe predator feeding rates and are central to predator-prey theory. Originally defined as the relationship between predator feeding rates and prey densities, it is now well known that functional responses are shaped by a multitude of factors. However, much of our knowledge about how these factors influence functional responses is based on laboratory studies that are generally logistically constrained to examining only a few factors simultaneously and that have unclear links to the conditions organisms experience in the field.
View Article and Find Full Text PDFFunctional responses, the relationships between consumer foraging rate and resource (prey) density, provide key insights into consumer-resource interactions while also being a major driver of population dynamics and food web structure. We present a global database of 2598 standardized functional responses and parameters extracted from the published literature. We refit the functional responses with a Type II model using standardized methods and report the fitted parameters along with data on experimental conditions, consumer and resource taxonomy and type, as well as the habitat and dimensionality of the foraging interaction.
View Article and Find Full Text PDFAbstractA scientific understanding of the biological world arises when ideas about how nature works are formalized, tested, refined, and then tested again. Although the benefits of feedback between theoretical and empirical research are widely acknowledged by ecologists, this link is still not as strong as it could be in ecological research. This is in part because theory, particularly when expressed mathematically, can feel inaccessible to empiricists who may have little formal training in advanced math.
View Article and Find Full Text PDFChloroviruses are large viruses that replicate in chlorella-like green algae and normally exist as mutualistic endosymbionts (referred to as zoochlorellae) in protists such as . Chlorovirus populations rise and fall in indigenous waters through time; however, the factors involved in these virus fluctuations are still under investigation. Chloroviruses attach to the surface of but cannot infect their zoochlorellae hosts because the viruses cannot reach the zoochlorellae as long as they are in the symbiotic phase.
View Article and Find Full Text PDFUnderstanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell).
View Article and Find Full Text PDFHow and if organisms can adapt to changing temperatures has drastic consequences for the natural world. Thermal adaptation involves finding a match between temperatures permitting growth and the expected temperature distribution of the environment. However, if and how this match is achieved, and how tightly linked species change together, is poorly understood.
View Article and Find Full Text PDFPredator functional responses describe predator feeding rates and are central to predator-prey theory. Ecologists have measured thousands of predator functional responses using the same basic experimental method. However, this design is ill-suited to address many current questions regarding functional responses.
View Article and Find Full Text PDFProc Biol Sci
November 2020
Trait evolution in predator-prey systems can feed back to the dynamics of interacting species as well as cascade to impact the dynamics of indirectly linked species (eco-evolutionary trophic cascades; EETCs). A key mediator of trophic cascades is body mass, as it both strongly influences and evolves in response to predator-prey interactions. Here, we use Gillespie eco-evolutionary models to explore EETCs resulting from top predator loss and mediated by body mass evolution.
View Article and Find Full Text PDFAbstractBody mass-based links between predator and prey are fundamental to the architecture of food webs. These links determine who eats whom across trophic levels and strongly influence the population abundance, flow of energy, and stability properties of natural communities. Body mass links scale up to create predator-prey mass relationships across species, but the origin of these relationships is unclear.
View Article and Find Full Text PDFMol Ecol Resour
November 2020
Dietary metabarcoding-the process of taxonomic identification of food species from DNA in consumer guts or faeces-has been rapidly adopted by ecologists to gain insights into biocontrol, invasive species and the structure of food webs. However, an outstanding issue with metabarcoding is the semi-quantitative nature of the data it provides: because metabarcoding is likely to produce false negatives for some prey more often than for other prey, we cannot infer relative frequencies of prey in the diet. To correct for this, we can adjust detected prey frequencies using DNA detectability half-lives unique to each predator-prey combination.
View Article and Find Full Text PDFBackground: Predicting the effects of climate warming on the dynamics of ecological systems requires understanding how temperature influences birth rates, death rates and the strength of species interactions. The temperature dependance of these processes-which are the underlying mechanisms of ecological dynamics-is often thought to be exponential or unimodal, generally supported by short-term experiments. However, ecological dynamics unfold over many generations.
View Article and Find Full Text PDFThe effects of climate change-such as increased temperature variability and novel predators-rarely happen in isolation, but it is unclear how organisms cope with multiple stressors simultaneously. To explore this, we grew replicate populations in either constant or variable temperatures and exposed half to predation. We then fit thermal performance curves (TPCs) of intrinsic growth rate ( ) for each replicate population ( = 12) across seven temperatures (10°C-38°C).
View Article and Find Full Text PDFFunctional responses describe how consumer foraging rates change with resource density. Despite extensive research looking at the factors underlying foraging interactions, there remains ongoing controversy about how temperature and body size control the functional response parameters space clearance (or attack) rate and handling time. Here, we investigate the effects of temperature, consumer mass, and resource mass using the largest compilation of functional responses yet assembled.
View Article and Find Full Text PDF