Publications by authors named "John P DeGrave"

Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires.

View Article and Find Full Text PDF

Topologically stable magnetic skyrmions realized in B20 metal silicide or germanide compounds with helimagnetic order are very promising for magnetic memory and logic devices. However, these applications are hindered because the skyrmions only survive in a small temperature-field (T-H) pocket near the critical temperature Tc in bulk materials. Here we demonstrate that the skyrmion state in helimagnetic MnSi nanowires with varied sizes from 400 to 250 nm can exist in a substantially extended T-H region.

View Article and Find Full Text PDF

We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates.

View Article and Find Full Text PDF

We report here the real-space observation of skyrmions and helical magnetic domains in a MnSi nanowire (NW) using Lorentz transmission electron microscopy (LTEM). The MnSi NW was thinned to a rectangular cross-section by focused-ion beam milling to reduce obstructive Fresnel fringes. Helimagnetic domains, imaged as alternating bright and dark contrast stripes with an 18 nm period, were observed to be the spontaneous magnetic ground state at 6 K, while the hexagonal skyrmion lattice (SkX) with a domain diameter of 18 nm was observed under a normal magnetic field of 210 mT.

View Article and Find Full Text PDF

We present a general methodology for measuring the Hall effect on nanostructures with one-dimensional (1D) nanowire morphology. Relying only on typical e-beam lithography, the methodology developed herein utilizes an angled electrode evaporation technique so that the nanowire itself is a shadow mask and an intimate sidewall contact can be formed for the Hall electrodes. A six-contact electrode scheme with offset transverse contacts is utilized that allows monitoring of both the longitudinal resistivity and the Hall resistivity which is extracted from the raw voltage from the transverse electrodes using an antisymmetrization procedure.

View Article and Find Full Text PDF

We report the growth, structural, and electrical characterization of single-crystalline iron pyrite (FeS₂) nanorods, nanobelts, and nanoplates synthesized via sulfidation reaction with iron dichloride (FeCl₂) and iron dibromide (FeBr₂). The as-synthesized products were confirmed to be single-crystal phase pure cubic iron pyrite using powder X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. An intermediate reaction temperature of 425 °C or a high sulfur vapor pressure under high temperatures was found to be critical for the formation of phase pure pyrite.

View Article and Find Full Text PDF

We report a general method for determining the spin polarization from nanowire materials using Andreev reflection spectroscopy implemented with a Nb superconducting contact and common electron-beam lithography device fabrication techniques. This method was applied to magnetic semiconducting Fe(1-x)Co(x)Si alloy nanowires with x̅ = 0.23, and the average spin polarization extracted from 6 nanowire devices is 28 ± 7% with a highest observed value of 35%.

View Article and Find Full Text PDF

We present the chemical vapor deposition (CVD) reactions of the single source precursor Fe(SiCl(3))(2)(CO)(4) over Si, Ge, CoSi(2)/Si, and CoSi/Si substrates to explore the growth and doping processes of silicide nanowires (NWs). Careful investigation of the composition and morphology of the NW products and the intruded silicide films from which they nucleate revealed that the group IV elements (Si, Ge) in the NW products originate from both the precursor and the substrate, while the metal elements incorporated into the NWs (Fe, Co) originate from vapor phase precursor delivery. The use of a Ge growth substrate enabled the successful synthesis of Fe(5)Si(2)Ge NWs, the first report of a metal silicide-germanide alloy NW.

View Article and Find Full Text PDF

We report the synthesis, structural characterization, and magnetotransport of single-crystalline nanowires of manganese monosilicide, MnSi. Bulk MnSi has unusual magnetic orderings, helimagnetism, and skyrmions at ambient pressure, and high pressure studies have revealed partial magnetic ordering and non-Fermi liquid behavior. MnSi nanowires were synthesized using chemical vapor deposition of MnCl(2) onto silicon substrates.

View Article and Find Full Text PDF