Antibacterial surfaces can be classified into two categories: passive surfaces, which repel bacteria by affecting surface wettability, and active surfaces, which have bactericidal properties that disrupt cell membranes upon contact. With the increasing demand for effective antibacterial solutions that combine these properties, advanced strategies are concentrating on developing surfaces with dual antimicrobial functionalities. Here, we present surfaces with nanotexture resulting from the phase separation of two different amphiphilic block copolymers displaying efficient dual functionality against bacteria growth.
View Article and Find Full Text PDFSolid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules.
View Article and Find Full Text PDFPolymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context.
View Article and Find Full Text PDF