Additive manufacturing can enable the fabrication of batteries in nonconventional form factors, enabling higher practical energy density due to improved material packing efficiency of power sources in devices. Furthermore, energy density can be improved by transitioning from conventional Li-ion battery materials to lithium metal anodes and conversion cathodes. Iron disulfide (FeS) is a prominent conversion cathode of commercial interest; however, the direct-ink-write (DIW) printing of FeS inks for custom-form battery applications has yet to be demonstrated or optimized.
View Article and Find Full Text PDFFeraheme, is a recently FDA-cleared superparamagnetic iron oxide nanoparticle (SPION)-based MRI contrast agent that is also employed in the treatment of iron deficiency anemia. Feraheme nanoparticles have a hydrodynamic diameter of 30 nm and consist of iron oxide crystallites complexed with a low molecular weight, semi-synthetic carbohydrate. These features are attractive for other potential biomedical applications such as magnetic fluid hyperthermia (MFH), since the carboxylated polymer coating affords functionalization of the particle surface and the size allows for accumulation in highly vascularized tumors via the enhanced permeability and retention effect.
View Article and Find Full Text PDF