An effective and flexible method is presented that can be used to investigate cofractionation of groups of nuclear proteins. The method was used to analyze chromatin-related proteins, of which high-mobility group B (HMGB) proteins consistently cofractionated by cation-exchange chromatography with the histone dimer (H2A-H2B). This led to the hypothesis that the two form a complex, further suggested by gel filtration, in which the HMGBs with core histones eluted as a defined high-molecular-weight peak.
View Article and Find Full Text PDFHistone linker proteins H1 and H5 were purified from chicken erythrocyte cell nuclei under nondenaturing conditions. The purified linker histones were analyzed using in-solution enzymatic digestions followed by nanoflow reverse-phase high-performance liquid chromatography tandem mass spectrometry. We have identified all six major isoforms of the chicken histone H1 (H101, H102, H103, H110, H11R and H11L) and, in addition, the specialist avian isoform H5.
View Article and Find Full Text PDFA H3 dimer band is produced when purified native histone octamers are run on an SDS-PAGE gel in a beta-mercaptoethanol-free environment. To investigate this, native histone octamer crystals, derived from chicken erythrocytes, and of structure (H2A-H2B)-(H4-H3)-(H3'-H4')-(H2B'-H2A'), were grown in 2 M KCl, 1.35 M potassium phosphates and 250-350 microM of the oxidising agent S-nitrosoglutathione, pH 6.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
June 2005
Crystals of native histone octamers (H2A-H2B)-(H4-H3)-(H3'-H4')-(H2B'-H2A') from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.
View Article and Find Full Text PDFThe core histone proteins contain modification sites that are key elements in the regulation of the cell cycle, DNA replication and repair with histone assembly, control of gene expression, and transcriptional elongation. Much work has been done on the various molecular assemblies that remodel nucleosomes, methylate, ubiquitinate, and cause ADP-ribosylation of histones, and acetylate and phosphorylate core histone tails. The core histones are the final targets of the enzymes in the molecular assemblies.
View Article and Find Full Text PDF