Publications by authors named "John Overington"

Somatic mutations in are found in a quarter of children with diffuse intrinsic pontine glioma (DIPG), but there are no ACVR1 inhibitors licensed for the disease. Using an artificial intelligence-based platform to search for approved compounds for -mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 ( = 150 nmol/L) and reduce DIPG cell viability but has limited ability to cross the blood-brain barrier.

View Article and Find Full Text PDF

Background: Despite the availability of effective drug therapies that reduce low-density lipoprotein (LDL)-cholesterol (LDL-C), cardiovascular disease (CVD) remains an important cause of mortality and morbidity. Therefore, additional LDL-C reduction may be warranted, especially for people who are unresponsive to, or unable to take, existing LDL-C-reducing therapies. By inhibiting the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, monoclonal antibodies (PCSK9 inhibitors) reduce LDL-C and CVD risk.

View Article and Find Full Text PDF

Lack of efficacy in the intended disease indication is the major cause of clinical phase drug development failure. Explanations could include the poor external validity of pre-clinical (cell, tissue, and animal) models of human disease and the high false discovery rate (FDR) in preclinical science. FDR is related to the proportion of true relationships available for discovery (γ), and the type 1 (false-positive) and type 2 (false negative) error rates of the experiments designed to uncover them.

View Article and Find Full Text PDF
Article Synopsis
  • In May 2019, an international conference organized by the Wellcome Centre for Anti-Infectives Research at the University of Dundee focused on finding new medicines to treat infectious diseases, especially in Low and Middle Income Countries.
  • The conference highlighted the urgent need for new drugs and aimed to learn from various disease areas to improve drug discovery and development processes.
  • The discussions included topics from clinical development back to drug discovery pathways, emphasizing the importance of collaboration between preclinical and clinical phases.
View Article and Find Full Text PDF

Following multiple warnings from governments and health organisations, there has been renewed investment, led by the public sector, in the discovery of novel antimicrobials to meet the challenge of rising levels of drug-resistant infection, particularly in the case of resistance to antibiotics. Initiatives have also been announced to support and enable the antibiotic discovery process. In January 2018, the Medicines Discovery Catapult, UK, hosted a symposium: Next Generation Antibiotics Discovery, to consider the latest initiatives and any remaining challenges to inform and guide the international research community and better focus resources to yield a novel class of antibiotic.

View Article and Find Full Text PDF

A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome.

View Article and Find Full Text PDF

Knowledge of the full target space of bioactive substances, approved and investigational drugs as well as chemical probes, provides important insights into therapeutic potential and possible adverse effects. The existing compound-target bioactivity data resources are often incomparable due to non-standardized and heterogeneous assay types and variability in endpoint measurements. To extract higher value from the existing and future compound target-profiling data, we implemented an open-data web platform, named Drug Target Commons (DTC), which features tools for crowd-sourced compound-target bioactivity data annotation, standardization, curation, and intra-resource integration.

View Article and Find Full Text PDF

Proteochemometric modeling (PCM) is a computational approach that can be considered an extension of quantitative structure-activity relationship (QSAR) modeling, where a single model incorporates information for a family of targets and all the associated ligands instead of modeling activity versus one target. This is especially useful for situations where bioactivity data exists for similar proteins but is scarce for the protein of interest. Here we demonstrate the application of PCM to identify allosteric modulators of metabotropic glutamate (mGlu) receptors.

View Article and Find Full Text PDF

Mycobacterium phenotypic hits are a good reservoir for new chemotypes for the treatment of tuberculosis. However, the absence of defined molecular targets and modes of action could lead to failure in drug development. Therefore, a combination of ligand-based and structure-based chemogenomic approaches followed by biophysical and biochemical validation have been used to identify targets for phenotypic hits.

View Article and Find Full Text PDF

Protein domains mediate drug-protein interactions and this principle can guide the design of multi-target drugs i.e. polypharmacology.

View Article and Find Full Text PDF

Testing potential drug treatments in animal disease models is a decisive step of all preclinical drug discovery programs. Yet, despite the importance of such experiments for translational medicine, there have been relatively few efforts to comprehensively and consistently analyze the data produced by in vivo bioassays. This is partly due to their complexity and lack of accepted reporting standards-publicly available animal screening data are only accessible in unstructured free-text format, which hinders computational analysis.

View Article and Find Full Text PDF

Background: Despite the availability of effective drug therapies that reduce low-density lipoprotein (LDL)-cholesterol (LDL-C), cardiovascular disease (CVD) remains an important cause of mortality and morbidity. Therefore, additional LDL-C reduction may be warranted, especially for patients who are unresponsive to, or unable to take, existing LDL-C-reducing therapies. By inhibiting the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, monoclonal antibodies (PCSK9 inhibitors) may further reduce LDL-C, potentially reducing CVD risk as well.

View Article and Find Full Text PDF

Drug resistance is one of the major problems in targeted cancer therapy. A major cause of resistance is changes in the amino acids that form the drug-target binding site. Despite of the numerous efforts made to individually understand and overcome these mutations, there is a lack of comprehensive analysis of the mutational landscape that can prospectively estimate drug-resistance mutations.

View Article and Find Full Text PDF

Target identification (determining the correct drug targets for a disease) and target validation (demonstrating an effect of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clinically relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm, we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there were licensed drugs, to clinical indications.

View Article and Find Full Text PDF

The success of mechanism-based drug discovery depends on the definition of the drug target. This definition becomes even more important as we try to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic class and predict drug utility in patient subgroups. However, drug targets are often poorly defined in the literature, both for launched drugs and for potential therapeutic agents in discovery and development.

View Article and Find Full Text PDF

The 'druggable genome' encompasses several protein families, but only a subset of targets within them have attracted significant research attention and thus have information about them publicly available. The Illuminating the Druggable Genome (IDG) program was initiated in 2014, has the goal of developing experimental techniques and a Knowledge Management Center (KMC) that would collect and organize information about protein targets from four families, representing the most common druggable targets with an emphasis on understudied proteins. Here, we describe two resources developed by the KMC: the Target Central Resource Database (TCRD) which collates many heterogeneous gene/protein datasets and Pharos (https://pharos.

View Article and Find Full Text PDF

ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.

View Article and Find Full Text PDF

The development of new antimalarial compounds remains a pivotal part of the strategy for malaria elimination. Recent large-scale phenotypic screens have provided a wealth of potential starting points for hit-to-lead campaigns. One such public set is explored, employing an open source research mechanism in which all data and ideas were shared in real time, anyone was able to participate, and patents were not sought.

View Article and Find Full Text PDF

Background: The process of discovering new drugs is a lengthy, time-consuming and expensive process. Modern day drug discovery relies heavily on the rapid identification of novel 'targets', usually proteins that can be modulated by small molecule drugs to cure or minimise the effects of a disease. Of the 20,000 proteins currently reported as comprising the human proteome, just under a quarter of these can potentially be modulated by known small molecules Storing information in curated, actively maintained drug discovery databases can help researchers access current drug discovery information quickly.

View Article and Find Full Text PDF

Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents.

View Article and Find Full Text PDF

As a follow up to the antimycobacterial screening exercise and the release of GSK´s first Tres Cantos Antimycobacterial Set (TCAMS-TB), this paper presents the results of a second antitubercular screening effort of two hundred and fifty thousand compounds recently added to the GSK collection. The compounds were further prioritized based on not only antitubercular potency but also on physicochemical characteristics. The 50 most attractive compounds were then progressed for evaluation in three different predictive computational biology algorithms based on structural similarity or GSK historical biological assay data in order to determine their possible mechanisms of action.

View Article and Find Full Text PDF

SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science.

View Article and Find Full Text PDF