Publications by authors named "John Omdahl"

Background: Prostate specific membrane antigen (PSMA) expression correlates with prostate cancer grade and is increased in hormone-refractory prostate cancer. The increased expression of PSMA following androgen deprivation therapy may be a consequence of the down-regulation of PSMA expression by androgen. Moreover, 1alpha,25-dihydroxyvitamin D3 (1,25-VD) has been shown to suppress prostate cancer progression as well as cell motility and invasion.

View Article and Find Full Text PDF

Cytochrome P450C24A1 (CYP24A1), a peripheral inner mitochondrial membrane hemoprotein and candidate oncogene, regulates the side-chain metabolism and biological function of vitamin D and many of its related analog drugs. Rational mutational analysis of rat CYP24A1 based on hybrid (2C5/BM-3) homology modeling and affinity labeling studies clarified the role of key domains (N-terminus, A', A, and F-helices, beta3a strand, and beta5 hairpin) in substrate binding and catalysis. The scope of our study was limited by an inability to purify stable mutant enzyme targeting soluble domains (B', G, and I-helices) and suggested greater conformational flexibility among CYP24A1's membrane-associated domains.

View Article and Find Full Text PDF

During the past two and half decades the elucidation of the metabolic pathways of 25OHD(3) and its active metabolite 1alpha,25(OH)(2)D(3) progressed in parallel. In spite of many advances in this area of vitamin D research, the unequivocal identification of the end products of 25OHD(3) metabolism through C-24 oxidation pathway has not been achieved. It is now well established that both 25OHD(3) and 1alpha,25(OH)(2)D(3) are metabolized through the same C-24 oxidation pathway initiated by the enzyme 24-hydroxylase (CYP24A1).

View Article and Find Full Text PDF

The hormone 1,25-dihydroxyvitamin D (1,25D) may play a protective role in prostate cancer. 25-hydroxyvitamin D 1-alpha hydroxylase (CYP27B1) is the enzyme responsible for the regulation of cellular 1,25D levels. CYP27B1 is substantially repressed in prostate cancer cells.

View Article and Find Full Text PDF

Objective: We evaluated the prevalence, trends, outcomes and the general experience of physicians performing atrial fibrillation ablation (AF-ABL) in the United States (US).

Background: AF-ABL is a non-pharmacological and potentially curative therapy for AF. Success rates for AF-ABL have been reported to be between 80 and 90%.

View Article and Find Full Text PDF

Although investigations of the transcriptional regulation of the rat cytochrome P450C24 [CYP24 (25-hydroxyvitamin D3 24-hydroxylase)] gene by 1,25D (1,25-dihydroxyvitamin D3) at either the genomic, or more recently at the non-genomic, level have provided insight into the mechanism of control of 1,25D levels, this regulation is still poorly characterized. Using HEK-293T cells (human embryonic kidney 293T cells), we reported that 1,25D induction of CYP24 requires JNK (c-Jun N-terminal kinase) but not the ERK1/2 (extracellular-signal-regulated kinase 1/2). The phenomenon of synergistic up-regulation of CYP24 expression by PMA and 1,25D is well known and was found to be protein kinase C-dependent.

View Article and Find Full Text PDF

Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug.

View Article and Find Full Text PDF

A high level of functional recombinant rat cytochrome P450C24 enzyme (CYP24A1) was obtained (40-50mg/L) using an Escherichia coli expression system. Purified enzyme was stable with retention of spectral and catalytic activity. The rate of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] side-chain oxidation and cleavage to the end-product calcitroic acid was directly related to the rate of electron transfer from the ferredoxin redox partner.

View Article and Find Full Text PDF

Vitamin D is a secosteroid that is metabolically activated and degraded through the actions of three cytochrome P450 hydroxylase enzymes. Bioactivation occurs through the sequential actions of cytochromes P450C25 and P450C1, resulting in synthesis of the pleiotropic hormone 1,25-dihydroxyvitamin D (1,25VD), which regulates over 60 genes whose actions include those associated with calcium homeostasis and immune responses as well as cellular growth, differentiation, and apoptosis. Inactivation of 1,25VD occurs by C23/C24 oxidation pathways that are catalyzed by the multifunctional cytochrome P450C24 enzyme.

View Article and Find Full Text PDF

The current study investigated the action of 1,25-dihydroxyvitamin D(3) (1,25D) at the genomic and signal transduction levels to induce rat cytochrome P450C24 (CYP24) gene expression. A rat CYP24 promoter containing two vitamin D response elements and an Ets-1 binding site was used to characterize the mechanism of actions for the 1,25D secosteroid hormone. The Ets-1 binding site was determined to function cooperatively with the most proximal vitamin D response element in a hormone-dependent fashion.

View Article and Find Full Text PDF

The regulation of the gene for renal 25-hydroxyvitamin D 1alpha- hydroxylase (1alpha(OH)ase; CYP27B1) by parathyroid hormone (PTH) under hypocalcemic conditions is fundamentally important for the maintenance of calcium and phosphate homeostasis. The molecular mechanism that underlies this hormonal response is of current interest and has been investigated in the present study by transfection analysis of the human 1alpha(OH)ase promoter in kidney AOK-B50 cells. We have shown that the first 305 bp of promoter can be induced by hormone in transient transfection assays and also within a chromatin environment when stably integrated.

View Article and Find Full Text PDF