Plants and other photosynthetic organisms have been suggested as potential pervasive biosensors for nuclear nonproliferation monitoring. We demonstrate that ultrafast laser filament-induced fluorescence of chlorophyll in the green alga Chlamydomonas reinhardtii is a promising method for remote, in-field detection of stress from exposure to nuclear materials. This method holds an advantage over broad-area surveillance, such as solar-induced fluorescence monitoring, when targeting excitation of a specific plant would improve the detectability, for example when local biota density is low.
View Article and Find Full Text PDFWe demonstrate that is it possible to optimize the yield of microwave radiation from plasmas generated by laser filamentation in atmosphere through manipulation of the laser wavefront. A genetic algorithm controls a deformable mirror that reconfigures the wavefront using the microwave waveform amplitude as feedback. Optimization runs performed as a function of air pressure show that the genetic algorithm can double the microwave field strength relative to when the mirror surface is flat.
View Article and Find Full Text PDFUltrashort laser pulse filamentation in air can extend the delivery of focused laser energy to distances greatly exceeding the Rayleigh length. In this way, remote measurements can be conducted using many standard methods of analytical spectroscopy. The performance of spectroscopic techniques can be enhanced by temporal gating, which rejects the unwanted noise and background.
View Article and Find Full Text PDFWe investigate MeV-level attosecond electron bunches from ultrashort-pulse laser-solid interactions through similarities between experimental and simulated electron energy spectra. We show measurements of the bunch duration and temporal structure from particle-in-cell simulations. The experimental observation of such bunches favors specular reflection direction when focusing the laser pulse onto a subwavelength boundary of thick overdense plasmas at grazing incidence.
View Article and Find Full Text PDFWe explored generation of high-energy nanosecond short pulses in the mid-IR wavelength range using 30-70-µm-core Er:ZBLAN fiber amplifiers. The highest energies achieved were ∼0.7 at 2.
View Article and Find Full Text PDFWe demonstrate the ability to position single and multiple filaments arbitrarily within the energy reservoir of a high power femtosecond laser pulse. A deformable mirror controlled by a genetic algorithm finds the optimal phase profile for producing filaments at user-defined locations within the energy reservoir to within a quarter of the nominal filament size, on average. This proof-of-principle experiment demonstrates a potential technique for fast control of the configuration of the filaments.
View Article and Find Full Text PDFWe demonstrate a new technique of coherent pulse stacking (CPS) amplification to overcome limits on achievable pulse energies from optical amplifiers. CPS uses reflecting resonators without active cavity-dumpers to transform a sequence of phase- and amplitude-modulated optical pulses into a single output pulse. Experimental validation with a single reflecting resonator demonstrates a near-theoretical stacked peak-power enhancement factor of ~2.
View Article and Find Full Text PDFQED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse intensities of J≥5×10(22) W/cm2 combined with electron beam energies of tens of GeV. In this regime multiple pairs may be generated from a single beam electron, some of the newborn particles being capable of further pair production.
View Article and Find Full Text PDFHarmonics up to the 18th order are generated from solid targets by focusing 2 mJ, 50 fs pulses at 800 nm to a spot size of 1.7 μm (FWHM). To our knowledge, this is the first demonstration of high-harmonic generation with a very short focal length paraboloid (f/1.
View Article and Find Full Text PDFWe investigate the production of electron beams from the interaction of relativistically-intense laser pulses with a solid-density SiO(2) target in a regime where the laser pulse energy is approximately mJ and the repetition rate approximately kHz. The electron beam spatial distribution and spectrum were investigated as a function of the plasma scale length, which was varied by deliberately introducing a moderate-intensity prepulse. At the optimum scale length of lambda/2, the electrons are emitted in a collimated beam having a quasimonoenergetic distribution that peaked at approximately 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2010
The emission from an electron in the field of a relativistically strong laser pulse is analyzed. At pulse intensities of J>or=2x10(22) W/cm(2) the emission from counterpropagating electrons is modified by the effects of quantum electrodynamics (QED), as long as the electron energy is sufficiently high: E>or=1 GeV . The radiation force experienced by an electron is for the first time derived from the QED principles and its applicability range is extended toward the QED-strong fields.
View Article and Find Full Text PDFA vacuum-free ultrafast laser-based x-ray source is demonstrated. Hard x-rays up to 80KeV are generated from Cu, Mo, Ag, Sn, and Ge targets in a laminar helium flow surrounded by atmosphere using tightly focused 33fs, 3mJ laser pulses. X-ray spectra, conversion efficiencies, and source sizes are presented.
View Article and Find Full Text PDFIn this paper we report the development of nanosecond-pulsed fiber laser technology for the next generation EUV lithography sources. The demonstrated fiber laser system incorporates large core fibers and arbitrary optical waveform generation, which enables achieving optimum intensities and other critical beam characteristics on a laser-plasma target. Experiment demonstrates efficient EUV generation with conversion efficiency of up to 2.
View Article and Find Full Text PDFTwo Yb(3+) -doped KY(WO(4))(2) regenerative amplifiers, one end pumped by two 1.6-W single-stripe diodes at 940 nm and the other side pumped by one 20-W diode bar at 980 nm, are demonstrated. When the regenerative amplifiers are injected, 40-muJ , 400-fs and 65-muJ , 460-fs pulses at a 1-kHz repetition rate are obtained following compression from the end- and side-pumped amplifiers, respectively.
View Article and Find Full Text PDFWe report the first hard X-ray source driven by a femtosecond fiber laser. The high energy fiber CPA system incorporated a 65mum LMA fiber amplifying stage which provided 300-fs recompressed pulses and diffraction limited beam quality with M(2) < 1.07.
View Article and Find Full Text PDFWe describe an all-reflective interferometric autocorrelator designed to measure ultrabroadband optical pulses in the UV through IR spectral regions. By carefully choosing the device geometry we are able to obtain approximations for the nonlinear autocorrelation functions that reduce computation times to values acceptable for use in iterative pulse reconstruction schemes. We describe the optical design, autocorrelation functions, and present proof-of-principle experimental results measuring 20.
View Article and Find Full Text PDFEfficient generation of extreme UV (EUV) light at lambda = 13.5 nm from a bulk Sn target has been demonstrated by using a fiber laser. The conversion efficiency from the 1064 nm IR to the EUV was measured to be around 0.
View Article and Find Full Text PDFLasers that provide an energy encompassed in a focal volume of a few cubic wavelengths (lambda3) can create relativistic intensity with maximal gradients using minimal energy. With particle-in-cell simulations we found that single 200-as pulses could be produced efficiently in a lambda3 laser pulse reflection by means of deflection and phase compression caused by the coherent motion of the plasma electrons that emit these pulses. This novel technique is efficient (approximately 10%) and can produce single attosecond pulses from the millijoule to the joule level.
View Article and Find Full Text PDF