Genetic deletion and pharmacological inhibition are distinct approaches to unravelling pain mechanisms, identifying targets and developing new analgesics. Both approaches have been applied to the voltage-gated sodium channels Na1.7 and Na1.
View Article and Find Full Text PDFCancer pain is a growing problem, especially with the substantial increase in cancer survival. Reports indicate that bone metastasis, whose primary symptom is bone pain, occurs in 65-75% of patients with advanced breast or prostate cancer. We optimized a preclinical model of cancer-induced bone pain (CIBP) involving the injection of Lewis Lung Carcinoma cells into the intramedullary space of the femur of C57BL/6 mice or transgenic mice on a C57BL/6 background.
View Article and Find Full Text PDFThe relationship between transcription and protein expression is complex. We identified polysome-associated RNA transcripts in the somata and central terminals of mouse sensory neurons in control, painful (plus nerve growth factor), and pain-free conditions (Nav1.7-null mice).
View Article and Find Full Text PDFMechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore.
View Article and Find Full Text PDFThe last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers.
View Article and Find Full Text PDFVisceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies.
View Article and Find Full Text PDFOpioids are widely used in the treatment of moderate and severe pain. Nociceptive stimulation has been reported to potentially promote microglial activation and neuroinflammation, which also causes chronic pain sensitization. The aim of this study was to demonstrate whether the novel μ receptor agonist MEL-0614 could inhibit activated microglia directly and the associated signaling pathway.
View Article and Find Full Text PDFDrive from peripheral neurons is essential in almost all pain states, but pharmacological silencing of these neurons to effect analgesia has proved problematic. Reversible gene therapy using long-lived chemogenetic approaches is an appealing option. We used the genetically activated chloride channel PSAM-GlyR to examine pain pathways in mice.
View Article and Find Full Text PDFMelzak and Wall's gate control theory proposed that innocuous input into the dorsal horn of the spinal cord represses pain-inducing nociceptive input. Here we show that input from proprioceptive parvalbumin-expressing sensory neurons tonically represses nociceptor activation within dorsal root ganglia. Deletion of parvalbumin-positive sensory neurons leads to enhanced nociceptor activity measured with GCaMP3, increased input into wide dynamic range neurons of the spinal cord and increased acute and spontaneous pain behaviour, as well as potentiated innocuous sensation.
View Article and Find Full Text PDFChronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme.
View Article and Find Full Text PDFVoltage-gated sodium (Na) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived Na channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at Na channels, and that co-expression of TMEM233 modulates the gating properties of Na1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior.
View Article and Find Full Text PDFOxaliplatin is a platinum-based chemotherapeutic agent that causes cold and mechanical allodynia in up to 90% of patients. Silent Nav1.8-positive nociceptive cold sensors have been shown to be unmasked by oxaliplatin, and this event has been causally linked to the development of cold allodynia.
View Article and Find Full Text PDFPersonalised and targeted interventions have revolutionised cancer treatment and dramatically improved survival rates in recent decades. Nonetheless, effective pain management remains a problem for patients diagnosed with cancer, who continue to suffer from the painful side effects of cancer itself, as well as treatments for the disease. This problem of cancer pain will continue to grow with an ageing population and the rapid advent of more effective therapeutics to treat the disease.
View Article and Find Full Text PDFNat Rev Dis Primers
June 2022
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks.
View Article and Find Full Text PDFSomatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase.
View Article and Find Full Text PDFItch is an unpleasant sensation that evokes a desire to scratch. Pathologic conditions such as allergy or atopic dermatitis produce severe itching sensation. Mas-related G protein receptors (Mrgprs) are receptors for many endogenous pruritogens.
View Article and Find Full Text PDFSomatosensation and pain are complex phenomena involving a rangeofspecialised cell types forming different circuits within the peripheral and central nervous systems. In recent decades, advances in the investigation of these networks, as well as their function in sensation, resulted from the constant evolution of electrophysiology and imaging techniques to allow the observation of cellular activity at the population level both and . Genetically encoded indicators of neuronal activity, combined with recent advances in DNA engineering and modern microscopy, offer powerful tools to dissect and visualise the activity of specific neuronal subpopulations with high spatial and temporal resolution.
View Article and Find Full Text PDFPatients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs).
View Article and Find Full Text PDFThe story of purinergic neurotransmission and regulation is intimately linked to studies of the somatosensory system. Burnstock's contributions to the discovery of ATP as a primary afferent neurotransmitter, as well as a signal of peripheral tissue damage that depolarised sensory neurons initiated a new period of pain research. The neuro-immune interactions that occur after tissue damage and are important for pain have now also been found to involve purinergic signalling, and adenosine has been demonstrated to have significant analgesic effects.
View Article and Find Full Text PDFDeletion of SCN9A encoding the voltage-gated sodium channel Na1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of Na1.
View Article and Find Full Text PDF