The MreB actin-like cytoskeleton assembles into dynamic polymers that coordinate cell shape in many bacteria. In contrast to most other cytoskeleton systems, few MreB-interacting proteins have been well characterized. Here, we identify a small protein from Caulobacter crescentus, an assembly inhibitor of MreB (AimB).
View Article and Find Full Text PDFThe ever-increasing number of sequenced genomes and subsequent sequence-based analysis has provided tremendous insight into cellular processes; however, the ability to experimentally manipulate this genomic information in the laboratory requires the development of new high-throughput methods. To translate this genomic information into information on protein function, molecular and cell biological techniques are required. One strategy to gain insight into protein function is to observe where each specific protein is subcellularly localized.
View Article and Find Full Text PDFFtsZ is an essential bacterial GTPase that polymerizes at midcell, recruits the division machinery, and may generate constrictive forces necessary for cytokinesis. However, many of the mechanistic details underlying these functions are unknown. We sought to identify FtsZ-binding proteins that influence FtsZ function in Caulobacter crescentus.
View Article and Find Full Text PDFFilament-forming cytoskeletal proteins are essential for the structure and organization of all cells. Bacterial homologues of the major eukaryotic cytoskeletal families have now been discovered, but studies suggest that yet more remain to be identified. We demonstrate that the metabolic enzyme CTP synthase (CtpS) forms filaments in Caulobacter crescentus.
View Article and Find Full Text PDFDespite the importance of subcellular localization for cellular activities, the lack of high-throughput, high-resolution imaging and quantitation methodologies has limited genomic localization analysis to a small number of archival studies focused on C-terminal fluorescent protein fusions. Here, we develop a high-throughput pipeline for generating, imaging, and quantitating fluorescent protein fusions that we use for the quantitative genomic assessment of the distributions of both N- and C-terminal fluorescent protein fusions. We identify nearly 300 localized Caulobacter crescentus proteins, up to 10-fold more than were previously characterized.
View Article and Find Full Text PDFYfgL together with NlpB, YfiO, and YaeT form a protein complex to facilitate the insertion of proteins into the outer membrane of Escherichia coli. Without YfgL, the levels of OmpA, OmpF, and LamB are significantly reduced, while OmpC levels are slightly reduced. In contrast, the level of TolC significantly increases in a yfgL mutant.
View Article and Find Full Text PDF