Publications by authors named "John N Randall"

Limited throughput is a shortcoming of the Scanning Tunneling Microscope (STM), particularly when used for atomically precise lithography. To address this issue, we have developed an on-chip STM based on Microelectromechanical-Systems (MEMS) technology. The device reported here has one degree of freedom, replacing the Z axis in a conventional STM.

View Article and Find Full Text PDF
Article Synopsis
  • A solid grasp of nanopatterning and nanometrology is crucial for advancing nanotechnology and quantum technology fields.
  • Scanning probe techniques are favored for nanoscale device fabrication due to their cost-effectiveness, but the current materials used for probes face issues like poor durability and high costs.
  • The study introduces GaN nanowires as a durable semiconductor alternative, enabling sub-10 nm lithography and atomic scale patterning while maintaining cost-efficiency in scanning probe lithography and microscopy.
View Article and Find Full Text PDF

A common cause of tip-sample crashes in a Scanning Tunneling Microscope (STM) operating in constant current mode is the poor performance of its feedback control system. We show that there is a direct link between the Local Barrier Height (LBH) and robustness of the feedback control loop. A method known as the "gap modulation method" was proposed in the early STM studies for estimating the LBH.

View Article and Find Full Text PDF

Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.

View Article and Find Full Text PDF

In this work, we report a detailed analysis of the atomic and electronic structures of transition metal scanning tunneling microscopy tips: Rh, Pd, W, Ir, and Pt pyramidal models, and transition metal (TM) atom tips supported on the W surface, by means of ab initio density-functional theory methods. The d electrons of the apex atoms of the TM tips (Rh, Pd, W, Ir, and Pt tetrahedral structures) show different behaviors near the Fermi level and, especially for the W tip, dz(2) states are shown to be predominant near the Fermi level. The electronic structures of larger pyramidal TM tip structures with a single apex atom are also reported.

View Article and Find Full Text PDF