Publications by authors named "John N Barlow"

We describe the first example of an inhibitory antibody fragment (nanobody ca1697) that binds simultaneously to an enzyme (the enzyme dihydrofolate reductase from Escherichia coli) and its bound substrate (folate). Binding of the antibody to the substrate causes a 20-fold reduction in the rate of folate exchange kinetics. This work opens up the prospect of designing new types of antibody-based inhibitors of enzymes and receptors through suitable design of immunogens.

View Article and Find Full Text PDF

Although allosteric effector antibodies are used widely as modulators of receptors and enzymes, experimental analysis of their mechanism remains highly challenging. Here, we investigate the molecular mechanisms of allosteric and non-allosteric effector antibodies in an experimentally tractable system, consisting of single-domain antibodies (nanobodies) that target the model enzyme dihydrofolate reductase (DHFR) from Escherichia coli. A panel of thirty-five nanobodies was isolated using several strategies to increase nanobody diversity.

View Article and Find Full Text PDF

Although it has been known for many years that antibodies display properties characteristic of allosteric effectors, the molecular mechanisms responsible for these effects remain poorly understood. Here, we describe a single-domain antibody fragment (nanobody) that modulates protein function by constraining conformational change in the enzyme dihydrofolate reductase (DHFR). Nanobody 216 (Nb216) behaves as a potent allosteric inhibitor of DHFR, giving rise to mixed hyperbolic inhibition kinetics.

View Article and Find Full Text PDF

We investigate the kinetic effects of antibody variable domain fragments derived from heavy chain antibodies (VHH domains) that behave as allosteric effectors of the nucleoside hydrolase from Trypanosoma vivax (TvNH). Strikingly, these antibodies can stimulate or inhibit TvNH steady-state activity, depending on the substrate used. This effect was investigated in greater detail using steady-state and pre-steady-state kinetic experiments.

View Article and Find Full Text PDF

The mechanism and energetics of the purine-specific nucleoside hydrolase from Trypanosoma vivax (TvNH) are examined by stopped-flow at low temperatures. TvNH is shown to follow an ordered uni-bi kinetic mechanism and high forward commitment with inosine as substrate (C(f) = 1.9 +/- 0.

View Article and Find Full Text PDF

We have investigated the transient kinetics of the nucleoside hydrolase from Trypanosoma vivax (TvNH) at low temperatures (5 degrees C). Three novel absorbance transients (termed tau1, tau3, and tau4) were detected during multiple-guanosine turnover stopped-flow absorbance spectroscopy, in addition to a transient (tau2) that had been observed previously at 35 degrees C. At 5 degrees C, TvNH displays full-sites activity and not half-of-the-sites activity as is apparent at 35 degrees C.

View Article and Find Full Text PDF

Methylaspartate ammonia-lyase (3-methylaspartase, MAL; EC ) catalyzes the reversible anti elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to give mesaconic acid. This reaction lies on the main catabolic pathway for glutamate in Clostridium tetanomorphum. MAL requires monovalent and divalent cation cofactors for full catalytic activity.

View Article and Find Full Text PDF