Publications by authors named "John Mosher"

An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls.

View Article and Find Full Text PDF

Objective: The aim of this study was to develop a machine learning algorithm using an off-the-shelf digital watch, the Samsung watch (SM-R800), and evaluate its effectiveness for the detection of generalized convulsive seizures (GCS) in persons with epilepsy.

Methods: This multisite epilepsy monitoring unit (EMU) phase 2 study included 36 adult patients. Each patient wore a Samsung watch that contained accelerometer, gyroscope, and photoplethysmographic sensors.

View Article and Find Full Text PDF

Objective: Ictal central apnea (ICA) is a semiological sign of focal epilepsy, associated with temporal and frontal lobe seizures. In this study, using qualitative and quantitative approaches, we aimed to assess the localizational value of ICA. We also aimed to compare ICA clinical utility in relation to other seizure semiological features of focal epilepsy.

View Article and Find Full Text PDF

Background: Stereoelectroencephalography (SEEG) remains critical in guiding epilepsy surgery. Robot-assisted techniques have shown promise in improving SEEG implantation outcomes but have not been directly compared. In this single-institution series, we compared ROSA and Stealth AutoGuide robots in pediatric SEEG implantation.

View Article and Find Full Text PDF

An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls.

View Article and Find Full Text PDF

Introduction: Magnetoencephalography (MEG) is a powerful technique for studying the human brain function. However, accurately estimating the number of sources that contribute to the MEG recordings remains a challenging problem due to the low signal-to-noise ratio (SNR), the presence of correlated sources, inaccuracies in head modeling, and variations in individual anatomy.

Methods: To address these issues, our study introduces a robust method for accurately estimating the number of active sources in the brain based on the F-ratio statistical approach, which allows for a comparison between a full model with a higher number of sources and a reduced model with fewer sources.

View Article and Find Full Text PDF

Objective: We aimed to study the correlation between seizure outcomes in patients with drug-resistant epilepsy (DRE) who underwent laser interstitial thermal therapy (LITT) and stereoelectroencephalographic electrophysiologic patterns with respect to the extent of laser ablation.

Methods: We retrospectively analyzed 16 consecutive DRE patients who underwent LITT. A seizure onset zone (SOZ) was obtained from multidisciplinary patient management conferences and again was confirmed independently by two epileptologists based on conventional analysis.

View Article and Find Full Text PDF

Objective: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing.

Methods: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .

View Article and Find Full Text PDF

Background: Medically refractory epilepsy constitutes up to one-third of the epilepsy pediatric patients. Corpus callosotomy (CC) has been used for the treatment of medically refractory epilepsy in children with atonic seizures and generalized tonic-clonic (GTC) seizures. In this case series study, we are describing a novel technique for CC using the frameless navigation probe through a minicraniotomy.

View Article and Find Full Text PDF

Human brain activity generates scalp potentials (electroencephalography - EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography - MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain.

View Article and Find Full Text PDF

Intracranial electroencephalographic (icEEG) recordings provide invaluable insights into neural dynamics in humans because of their unmatched spatiotemporal resolution. Yet, such recordings reflect the combined activity of multiple underlying generators, confounding the ability to resolve spatially distinct neural sources. To empirically quantify the listening zone of icEEG recordings, we computed correlations between signals as a function of distance (full width at half maximum; FWHM) between 8752 recording sites in 71 patients (33 female) implanted with either subdural electrodes (SDEs), stereo-encephalography electrodes (sEEG), or high-density sEEG electrodes.

View Article and Find Full Text PDF

Objective: Increased understanding of the role of cortical structures in respiratory control may help the understanding of seizure-induced respiratory dysfunction that leads to sudden unexpected death in epilepsy (SUDEP). The aim of this study was to characterize respiratory responses to electrical stimulation (ES), including inhibition and enhancement of respiration.

Methods: We prospectively recruited 19 consecutive patients with intractable epilepsy undergoing stereotactic electroencephalography (EEG) evaluation from June 2015 to June 2018.

View Article and Find Full Text PDF

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light.

View Article and Find Full Text PDF

There is growing evidence for neuronal hyperexcitability in Alzheimer's disease. Hyperexcitability is associated with an increase in epileptiform activity and the disruption of inhibitory activity of interneurons. Interneurons fire at a high rate and are frequently associated with high-frequency oscillations in the gamma frequency band (30-150 Hz).

View Article and Find Full Text PDF

Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM).

View Article and Find Full Text PDF
Article Synopsis
  • Magnetoencephalography (MEG) is a test used to localize sources of epilepsy in patients being considered for surgery.
  • The review highlights the need for a better understanding of clinical MEG concepts, as proficiency in this field requires both clinical and procedural knowledge.
  • It focuses on explaining the single equivalent dipole (sECD) method and its importance, while also discussing regional topology and source dynamics to aid in interpreting MEG-EEG results.
View Article and Find Full Text PDF

Objective: To determine whether brain connectivity differs between focal cortical dysplasia (FCD) types I and II.

Methods: We compared cortico-cortical evoked potentials (CCEPs) as measures of effective brain connectivity in 25 FCD patients with drug-resistant focal epilepsy who underwent intracranial evaluation with stereo-electroencephalography (SEEG). We analyzed the amplitude and latency of CCEP responses following ictal-onset single-pulse electrical stimulation (iSPES).

View Article and Find Full Text PDF

Magnetoencephalography (MEG) is recognized as a valuable non-invasive clinical method for localization of the epileptogenic zone and critical functional areas, as part of a pre-surgical evaluation for patients with pharmaco-resistant epilepsy. MEG is also useful in localizing functional areas as part of pre-surgical planning for tumor resection. MEG is usually performed in an outpatient setting, as one part of an evaluation that can include a variety of other testing modalities including 3-Tesla MRI and inpatient video-electroencephalography monitoring.

View Article and Find Full Text PDF

Objective: Stereotactic electroencephalography (SEEG) has been widely used to explore the epileptic network and localize the epileptic zone in patients with medically intractable epilepsy. Accurate anatomical labeling of SEEG electrode contacts is critically important for correctly interpreting epileptic activity. We present a method for automatically assigning anatomical labels to SEEG electrode contacts using a 3D-segmented cortex and coregistered postoperative CT images.

View Article and Find Full Text PDF

A magnetoencephalography (MEG) recording for clinical purposes requires a different level of attention and detail than that for research. As contrasted with a research subject, the MEG technologist must work with a patient who may not fully cooperate with instructions. The patient is on a clinical schedule, with generally no opportunity to return due to an erroneous or poor acquisition.

View Article and Find Full Text PDF
Article Synopsis
  • Beamformers are used to analyze neuronal sources from MEG/EEG signals, but differences in implementations complicate their use in research and clinical settings.
  • This study compared the performance of LCMV beamformers across four open-source toolboxes using various datasets, including simulated data and recordings from volunteers.
  • Results showed that while all toolboxes could reliably localize sources at typical signal-to-noise ratios, they varied in sensitivity to preprocessing methods, with one toolbox (Brainstorm) being more robust but at the cost of lower spatial resolution.
View Article and Find Full Text PDF

Background: Intracerebral electroencephalography (iEEG) using stereoelectroencephalography (SEEG) methodology for epilepsy surgery gives rise to complex data sets. The neurophysiological data obtained during the in-patient period includes categorization of the evoked potentials resulting from direct electrical cortical stimulation such as cortico-cortical evoked potentials (CCEPs). These potentials are recorded by hundreds of contacts, making these waveforms difficult to quickly interpret over such high-density arrays that are organized in three dimensional fashion.

View Article and Find Full Text PDF

The role of fast activity as a potential biomarker in localization of the epileptogenic zone (EZ) remains controversial due to recently reported unsatisfactory performance. We recently identified a "fingerprint" of the EZ as a time-frequency pattern that is defined by a combination of preictal spike(s), fast oscillatory activity, and concurrent suppression of lower frequencies. Here we examine the generalizability of the fingerprint in application to an independent series of patients (11 seizure-free and 13 non-seizure-free after surgery) and show that the fingerprint can also be identified in seizures with lower frequency (such as beta) oscillatory activity.

View Article and Find Full Text PDF

Objective: The human insula is increasingly being implicated as a multimodal functional network hub involved in a large variety of complex functions. Due to its inconspicuous location and highly vascular anatomy, it has historically been difficult to study. Cortico-cortical evoked potentials (CCEPs), utilize low frequency stimulation to map cerebral networks.

View Article and Find Full Text PDF

Brainstorm is a free, open-source Matlab and Java application for multimodal electrophysiology data analytics and source imaging [primarily MEG, EEG and depth recordings, and integration with MRI and functional near infrared spectroscopy (fNIRS)]. We also provide a free, platform-independent executable version to users without a commercial Matlab license. Brainstorm has a rich and intuitive graphical user interface, which facilitates learning and augments productivity for a wider range of neuroscience users with little or no knowledge of scientific coding and scripting.

View Article and Find Full Text PDF