Publications by authors named "John Moreman"

The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body.

View Article and Find Full Text PDF

Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA.

View Article and Find Full Text PDF

Bisphenol A (BPA), a chemical incorporated into plastics and resins, has estrogenic activity and is associated with adverse health effects in humans and wildlife. Similarly structured BPA analogues are widely used but far less is known about their potential toxicity or estrogenic activity in vivo. We undertook the first comprehensive analysis on the toxicity and teratogenic effects of the bisphenols BPA, BPS, BPF, and BPAF in zebrafish embryo-larvae and an assessment on their estrogenic mechanisms in an estrogen-responsive transgenic fish Tg(ERE:Gal4ff)(UAS:GFP).

View Article and Find Full Text PDF