Publications by authors named "John Mcgee"

The Community Multiscale Air Quality Model (CMAQ) is a local- to hemispheric-scale numerical air quality modeling system developed by the U.S. Environmental Protection Agency (USEPA) and supported by the Community Modeling and Analysis System (CMAS) center.

View Article and Find Full Text PDF

Tumor necrosis factor-α (TNF-α) plays a central role in immune response regulation. Because elevated TNF-α production is correlated with a range of diseases, inhibiting the interaction of this protein with its native receptors has been thoroughly explored as a therapeutic avenue. Despite advancements in the development of TNF-α inhibitors, concerns remain regarding immunogenicity and loss of activity in vivo.

View Article and Find Full Text PDF

Charge detection mass spectrometry (CDMS) is a well-established technique that provides direct mass spectral outputs regardless of analyte heterogeneity or molecular weight. Over the past few years, it has been demonstrated that CDMS can be multiplexed on Orbitrap analyzers utilizing an integrated approach termed individual ion mass spectrometry (IMS). To further increase adaptability, robustness, and throughput of this technique, here, we present a method that utilizes numerous integrated equipment components including a Kingfisher system, SampleStream platform, and Q Exactive mass spectrometer to provide a fully automated workflow for immunoprecipitation, sample preparation, injection, and subsequent IMS acquisition.

View Article and Find Full Text PDF

The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra.

View Article and Find Full Text PDF

Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run.

View Article and Find Full Text PDF

Collision cross section (CCS) measurements determined by ion mobility spectrometry (IMS) provide useful information about gas-phase protein structure that is complementary to mass analysis. Methods for determining CCS without a dedicated IMS system have been developed for Fourier transform mass spectrometry (FT-MS) platforms by measuring the signal decay during detection. Individual ion mass spectrometry (IMS) provides charge detection and measures ion lifetimes across the length of an FT-MS detection event.

View Article and Find Full Text PDF

Molecules that induce novel interactions between proteins hold great promise for the study of biological systems and the development of therapeutics, but their discovery has been limited by the complexities of rationally designing interactions between three components, and because known binders to each protein are typically required to inform initial designs. Here, we report a general and rapid method for discovering α-helically constrained (Helicon) polypeptides that cooperatively induce the interaction between two target proteins without relying on previously known binders or an intrinsic affinity between the proteins. We show that Helicons are capable of binding every major class of E3 ubiquitin ligases, which are of great biological and therapeutic interest but remain largely intractable to targeting by small molecules.

View Article and Find Full Text PDF

The molecular identification of tissue proteoforms by top-down mass spectrometry (TDMS) is significantly limited by throughput and dynamic range. We introduce AutoPiMS, a single-ion MS based multiplexed workflow for top-down tandem MS (MS) directly from tissue microenvironments in a semi-automated manner. AutoPiMS directly off human ovarian cancer sections allowed for MS identification of 73 proteoforms up to 54 kDa at a rate of <1 min per proteoform.

View Article and Find Full Text PDF

Antibody-antigen interactions are central to the immune response. Variation of protein antigens such as isoforms and post-translational modifications can alter their antibody binding sites. To directly connect the recognition of protein antigens with their molecular composition, we probed antibody-antigen complexes by using native tandem mass spectrometry.

View Article and Find Full Text PDF

Upper gastrointestinal bleeding is a relatively common and life-threatening condition encountered by critical care transport crews. It is of paramount importance that transport crews understand the underlying pathophysiology of variceal and nonvariceal gastrointestinal bleeding as well as the nuanced management of this patient population. This article reviews the current clinical evidence on initial resuscitation, medical management, and advanced invasive therapies (such as balloon tamponade devices) that transport crews should be familiar with to manage these patients.

View Article and Find Full Text PDF

The α-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable α-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of α-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering α-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized α-helix recognition sites, and restricting the starting chemical matter to those known α-helical binders.

View Article and Find Full Text PDF

Charge detection mass spectrometry (CDMS) provides mass domain spectra of large and highly heterogeneous analytes. Over the past few years, we have multiplexed CDMS on Orbitrap instruments, an approach termed Individual Ion Mass Spectrometry (IMS). Until now, IMS required manual adjustment of injection times to collect spectra in the individual ion regime.

View Article and Find Full Text PDF
Article Synopsis
  • Imaging human tissues for proteoforms has been challenging due to low specificity and limited coverage, but a new technique called proteoform imaging mass spectrometry (PiMS) significantly improves detection capabilities.
  • PiMS enhances the detection limit for proteoforms by four times compared to previous methods and allows for precise imaging at spatial resolutions of less than 80 micrometers.
  • By applying PiMS to human kidney samples, researchers identified 169 out of 400 target proteoforms, mapping their specific locations within various anatomical structures and demonstrating the potential for greater proteome analysis in tissue imaging.
View Article and Find Full Text PDF

Biology is driven by a vast set of molecular interactions that evolved over billions of years. Just as covalent modifications like acetylations and phosphorylations can change a protein's function, so too can noncovalent interactions with metals, small molecules, and other proteins. However, much of the language of protein-level biology is left either undiscovered or inferred, as traditional methods used in the field of proteomics use conditions that dissociate noncovalent interactions and denature proteins.

View Article and Find Full Text PDF

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells.

View Article and Find Full Text PDF

The combined use of electrospray ionization run in so-called "native mode" with top-down mass spectrometry (nTDMS) is enhancing both structural biology and discovery proteomics by providing three levels of information in a single experiment: the intact mass of a protein or complex, the masses of its subunits and non-covalent cofactors, and fragment ion masses from direct dissociation of subunits that capture the primary sequence and combinations of diverse post-translational modifications (PTMs). While intact mass data are readily deconvoluted using well-known software options, the analysis of fragmentation data that result from a tandem MS experiment - essential for proteoform characterization - is not yet standardized. In this tutorial, we offer a decision-tree for the analysis of nTDMS experiments on protein complexes and diverse bioassemblies.

View Article and Find Full Text PDF

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS , a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multi-parametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells.

View Article and Find Full Text PDF

Field asymmetric ion mobility spectrometry (FAIMS), when used in proteomics studies, provides superior selectivity and enables more proteins to be identified by providing additional gas-phase separation. Here, we tested the performance of cylindrical FAIMS for the identification and characterization of proteoforms by top-down mass spectrometry of heterogeneous protein mixtures. Combining FAIMS with chromatographic separation resulted in a 62% increase in protein identifications, an 8% increase in proteoform identifications, and an improvement in proteoform identification compared to samples analyzed without FAIMS.

View Article and Find Full Text PDF

Native mass spectrometry (nMS) is a rapidly growing method for the characterization of large proteins and protein complexes, preserving "native" non-covalent inter- and intramolecular interactions. Direct infusion of purified analytes into a mass spectrometer represents the standard approach for conducting nMS experiments. Alternatively, CZE can be performed under native conditions, providing high separation performance while consuming trace amounts of sample material.

View Article and Find Full Text PDF

Native mass spectrometry involves transferring large biomolecular complexes into the gas phase, enabling the characterization of their composition and stoichiometry. However, the overlap in distributions created by residual solvation, ionic adducts, and post-translational modifications creates a high degree of complexity that typically goes unresolved at masses above ∼150 kDa. Therefore, native mass spectrometry would greatly benefit from higher resolution approaches for intact proteins and their complexes.

View Article and Find Full Text PDF

Objectives: Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures.

View Article and Find Full Text PDF

Intact protein mass spectrometry (MS) via electrospray-based methods is often degraded by low-mass contaminants, which can suppress the spectral quality of the analyte of interest via space-charge effects. Consequently, selective removal of contaminants by their mobilities would benefit native MS if achieved without additional hardware and before the mass analyzer regions used for selection, analyte readout, or tandem MS. Here, we use the high-pressure multipole within the source of an Orbitrap Tribrid as the foundation for a coarse ion filter.

View Article and Find Full Text PDF