Nutritional and metabolic state in dairy cows are important determinants of the immune response. During the periparturient period, a state of negative energy balance in the cow increases plasma concentrations of fatty acids (FA), which are associated with inflammation. Among immune cells, CD4 T are able to function under high-FA conditions, but the underlying mechanisms regulating these events remain unclear.
View Article and Find Full Text PDFDecreased intake is induced by stressors such as parturition, transportation, dietary transitions, and disease. An important function of one-carbon metabolism (OCM) is to produce the antioxidant glutathione to help reduce oxidative stress. Although various components of OCM are expressed in the bovine rumen and small intestine, the relationship between reduced feed intake, OCM, and antioxidant mechanisms in gut tissues is unknown.
View Article and Find Full Text PDFPostpartum cows experience lipolysis in adipose tissue due to negative energy balance, and accumulation of free fatty acids leads to metabolic stress in adipose tissue. Ferroptosis is a type of cell death triggered by excessive buildup of iron-dependent lipid peroxides and is involved in the occurrence and development of various metabolic diseases in nonruminants. However, whether ferroptosis occurs in the adipose tissue of ketotic cows and the regulatory mechanisms behind ferroptosis are still unclear.
View Article and Find Full Text PDFHepatocellular lipid accumulation characterizes fatty liver in dairy cows. Lipid droplets (LD), specialized organelles that store lipids and maintain cellular lipid homeostasis, are responsible for the ectopic storage of lipids associated with several metabolic disorders. In recent years, nonruminant studies have reported that LD-mitochondria interactions play an important role in lipid metabolism.
View Article and Find Full Text PDFExcessive concentrations of free fatty acids (FFA) are the main factors causing immune dysfunction and inflammation in dairy cows with ketosis. Polarization of macrophages (the process of macrophages freely switching from one phenotype to another) into M1 or M2 phenotypes is an important event during inflammation induced by environmental stimuli. In nonruminants, mammalian target of rapamycin (mTOR)-mediated autophagy (a major waste degradation process) regulates macrophage polarization.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
October 2024
A significant reduction in plasma concentration of cholesterol during early lactation is a common occurrence in high-yielding dairy cows. An insufficient synthesis of cholesterol in the liver has been linked to lipid accumulation caused by high concentrations of fatty acids during negative energy balance (NEB). As ruminant diets do not provide quantitative amounts of cholesterol for absorption, phytosterols such as β-sitosterol may serve to mitigate the shortfall in cholesterol within the liver during NEB.
View Article and Find Full Text PDFKetosis, a commonly observed energy metabolism disorder in dairy cows during the peripartal period, is distinguished by increased concentrations of BHB in the blood. This condition has a negative impact on milk production and quality, causing financial losses. An untargeted metabolomics approach was performed on plasma samples from cows between 5 and 7 DIM diagnosed as controls (CON; BHB <1.
View Article and Find Full Text PDFVet Med Int
March 2024
This study aimed to evaluate whether total replacement of soybean meal (SBM) with sundried soymilk residue (SSR) in a total mixed ration (TMR) affects intake, digestibility, milk production, and blood metabolites in dairy goats. A total of 12 healthy Saanen dairy goats (40.12 ± 5.
View Article and Find Full Text PDFHigh-yielding dairy cows in early lactation often encounter difficulties in meeting the energy requirements essential for maintaining milk production. This is primarily attributed to insufficient dry matter intake, which consequently leads to sustained lipolysis of adipose tissue. Fatty acids released by lipolysis can disrupt metabolic homeostasis.
View Article and Find Full Text PDFMethionine and folate cycles along with transsulfuration comprise the one‑carbon metabolism (OCM) pathway. Amino acids and other nutrients feed into OCM, which is central to cellular function. mRNA abundance, proteins (Western blotting), and metabolites (GC-MC) associated with OCM were used to characterize these mechanisms in fetal tissues.
View Article and Find Full Text PDF