Publications by authors named "John Marioni"

Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation.

View Article and Find Full Text PDF

T cells develop from circulating precursor cells, which enter the thymus and migrate through specialized subcompartments that support their maturation and selection. In humans, this process starts in early fetal development and is highly active until thymic involution in adolescence. To map the microanatomical underpinnings of this process in pre- and early postnatal stages, we established a quantitative morphological framework for the thymus-the Cortico-Medullary Axis-and used it to perform a spatially resolved analysis.

View Article and Find Full Text PDF

Drug resistance is a principal limitation to the long-term efficacy of cancer therapies. Cancer genome sequencing can retrospectively delineate the genetic basis of drug resistance, but this requires large numbers of post-treatment samples to nominate causal variants. Here we prospectively identify genetic mechanisms of resistance to ten oncology drugs from CRISPR base editing mutagenesis screens in four cancer cell lines using a guide RNA library predicted to install 32,476 variants in 11 cancer genes.

View Article and Find Full Text PDF

Single-cell RNA-sequencing enables testing for differential expression (DE) between conditions at a cell type level. While powerful, one of the limitations of such approaches is that the sensitivity of DE testing is dictated by the sensitivity of clustering, which is often suboptimal. To overcome this, we present miloDE-a cluster-free framework for DE testing (available as an open-source R package).

View Article and Find Full Text PDF

Multiomic droplet-based technologies allow different molecular modalities, such as chromatin accessibility and gene expression (scATAC-seq and scRNA-seq), to be probed in the same nucleus. We develop EmptyDropsMultiome, an approach that distinguishes true nuclei-containing droplets from background. Using simulations, we show that EmptyDropsMultiome has higher statistical power and accuracy than existing approaches, including CellRanger-arc and EmptyDrops.

View Article and Find Full Text PDF

We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.

View Article and Find Full Text PDF

Here we use single-cell RNA sequencing to compile a human breast cell atlas assembled from 55 donors that had undergone reduction mammoplasties or risk reduction mastectomies. From more than 800,000 cells we identified 41 cell subclusters across the epithelial, immune and stromal compartments. The contribution of these different clusters varied according to the natural history of the tissue.

View Article and Find Full Text PDF

Cis-genetic effects are key determinants of transcriptional divergence in discrete tissues and cell types. However, how cis- and trans-effects act across continuous trajectories of cellular differentiation in vivo is poorly understood. Here, we quantify allele-specific expression during spermatogenic differentiation at single-cell resolution in an F1 hybrid mouse system, allowing for the comprehensive characterisation of cis- and trans-genetic effects, including their dynamics across cellular differentiation.

View Article and Find Full Text PDF

CRISPR screens with single-cell transcriptomic readouts are a valuable tool to understand the effect of genetic perturbations including single nucleotide variants (SNVs) associated with diseases. Interpretation of these data is currently limited as genotypes cannot be accurately inferred from guide RNA identity alone. scSNV-seq overcomes this limitation by coupling single-cell genotyping and transcriptomics of the same cells enabling accurate and high-throughput screening of SNVs.

View Article and Find Full Text PDF

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry.

View Article and Find Full Text PDF

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed.

View Article and Find Full Text PDF

T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs.

View Article and Find Full Text PDF

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.

View Article and Find Full Text PDF

Effector cytotoxic T lymphocytes (CTLs) are critical for ridding the body of infected or cancerous cells. CTL T cell receptor (TCR) ligation not only drives the delivery and release of cytolytic granules but also initiates a new wave of transcription. In order to address whether TCR-induced transcriptomic changes impact the ability of CTLs to kill, we asked which genes are expressed immediately after CTLs encounter targets and how CTL responses change when inhibiting transcription.

View Article and Find Full Text PDF

Joint analysis of single-cell genomics data from diseased tissues and a healthy reference can reveal altered cell states. We investigate whether integrated collections of data from healthy individuals (cell atlases) are suitable references for disease-state identification and whether matched control samples are needed to minimize false discoveries. We demonstrate that using a reference atlas for latent space learning followed by differential analysis against matched controls leads to improved identification of disease-associated cells, especially with multiple perturbed cell types.

View Article and Find Full Text PDF

Understanding of the molecular drivers of lineage diversification and tissue patterning during primary germ layer development requires in-depth knowledge of the dynamic molecular trajectories of cell lineages across a series of developmental stages of gastrulation. Through computational modeling, we constructed at single-cell resolution, a spatio-temporal transcriptome of cell populations in the germ-layers of gastrula-stage mouse embryos. This molecular atlas enables the inference of molecular network activity underpinning the specification and differentiation of the germ-layer tissue lineages.

View Article and Find Full Text PDF

Traumatic spinal cord injuries (SCI) are a group of highly debilitating pathologies affecting thousands annually, and adversely affecting quality of life. Currently, no fully restorative therapies exist, and SCI still results in significant personal, societal and financial burdens. Inflammation plays a major role in the evolution of SCI, with myeloid cells, including bone marrow derived macrophages (BMDMs) and microglia (MG) being primary drivers of both early secondary pathogenesis and delayed wound healing events.

View Article and Find Full Text PDF

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation.

View Article and Find Full Text PDF

Droplet-based single-cell assays, including single-cell RNA sequencing (scRNA-seq), single-nucleus RNA sequencing (snRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), generate considerable background noise counts, the hallmark of which is nonzero counts in cell-free droplets and off-target gene expression in unexpected cell types. Such systematic background noise can lead to batch effects and spurious differential gene expression results. Here we develop a deep generative model based on the phenomenology of noise generation in droplet-based assays.

View Article and Find Full Text PDF

The mammalian body plan is shaped by rhythmic segmentation of mesoderm into somites, which are transient embryonic structures that form down each side of the neural tube. We have analyzed the genome-wide transcriptional and chromatin dynamics occurring within nascent somites, from early inception of somitogenesis to the latest stages of body plan establishment. We created matched gene expression and open chromatin maps for the three leading pairs of somites at six time points during mouse embryonic development.

View Article and Find Full Text PDF

Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc.

View Article and Find Full Text PDF

Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells.

View Article and Find Full Text PDF

Currently available single-cell omics technologies capture many unique features with different biological information content. Data integration aims to place cells, captured with different technologies, onto a common embedding to facilitate downstream analytical tasks. Current horizontal data integration techniques use a set of common features, thereby ignoring non-overlapping features and losing information.

View Article and Find Full Text PDF
Article Synopsis
  • Human germline-soma segregation happens during weeks 2-3 in embryo development, and researchers are studying the specification of primordial germ cells (PGCs) using in vitro models and detailed in vivo datasets.
  • The study reveals a specific molecular signature that indicates a temporary increase in the potential for germ cell development during early epiblast development post-implantation.
  • Additionally, it finds that both PGCs and amniotic cells originate from similar progenitors in the embryo, with TFAP2A being essential for PGC formation, while TFAP2C takes over later in the genetic processes related to PGC fate.
View Article and Find Full Text PDF

Comparing molecular features, including the identification of genes with differential expression (DE) between conditions, is a powerful approach for characterising disease-specific phenotypes. When testing for DE in single-cell RNA sequencing data, current pipelines first assign cells into discrete clusters (or cell types), followed by testing for differences within each cluster. Consequently, the sensitivity and specificity of DE testing are limited and ultimately dictated by the granularity of the cell type annotation, with discrete clustering being especially suboptimal for continuous trajectories.

View Article and Find Full Text PDF