Publications by authors named "John Marino"

Nucleic acid sequencing technologies have gone through extraordinary advancements in the past several decades, significantly increasing throughput while reducing cost. To create similar advancement in proteomics, numerous approaches are being investigated to advance protein sequencing. One of the promising approaches uses N-terminal amino acid binders (NAABs), also referred to as recognizers, that selectively can identify amino acids at the N-terminus of a peptide.

View Article and Find Full Text PDF

The demand for rapid and efficient diagnostic point-of-care tests for respiratory infectious diseases has become increasingly critical in the current landscape. The emphasis on accessibility has been underscored over the past year, making it crucial to have biological components that exhibit fast and accurate kinetics. The foundation for precise, swift, and effective testing relies on the availability of highly responsive biological agents.

View Article and Find Full Text PDF

Numerous technologies are currently in development for use in next-generation protein sequencing platforms. A notable published approach employs fluorescently-tagged binding proteins to identity the N-terminus of immobilized peptides, in-between rounds of digestion. This approach makes use of N-terminal amino acid binder (NAAB) proteins, which would identify amino acids by chemical and shape complementarity.

View Article and Find Full Text PDF

The monoclonal antibody (mAb) protein class has become a primary therapeutic platform for the production of new life saving drug products. MAbs are comprised of two domains: the antigen-binding fragment (Fab) and crystallizable fragment (Fc). Despite the success in the clinic, NMR assignments of the complete Fab domain have been elusive, in part due to problems in production of properly folded, triply-labeled H,C,N Fab domain.

View Article and Find Full Text PDF

The clinical efficacy and safety of protein-based drugs such as monoclonal antibodies (mAbs) rely on the integrity of the protein higher order structure (HOS) during product development, manufacturing, storage, and patient administration. As mAb-based drugs are becoming more prevalent in the treatment of many illnesses, the need to establish metrics for quality attributes of mAb therapeutics through high-resolution techniques is also becoming evident. To this end, here we used a forced degradation method, time-dependent oxidation by hydrogen peroxide, on the model biotherapeutic NISTmAb and evaluated the effects on HOS with orthogonal analytical methods and a functional assay.

View Article and Find Full Text PDF

Purpose: Antisense oligonucleotide (ASO) therapeutics are an emerging class of biopharmaceuticals to treat and prevent diseases, particularly those involving "undruggable" protein targets. Impurities generated throughout the ASO drug manufacturing and formulation pipeline can be detrimental to drug safety and efficacy. Therefore, analytical techniques are needed to rigorously characterize these molecules for quality assurance purposes.

View Article and Find Full Text PDF

Bottom-up proteomic experiments often require selective conjugation or labeling of the N- and/or C-termini of peptides resulting from proteolytic digestion. For example, techniques based on surface fluorescence imaging are emerging as a promising route to high-throughput protein sequencing but require the generation of peptide surface arrays immobilized through single C-terminal point attachment while leaving the N-terminus free. While several robust approaches are available for selective N-terminal conjugation, it has proven to be much more challenging to implement methods for selective labeling or conjugation of the C-termini that can discriminate between the C-terminal carboxyl group and other carboxyl groups on aspartate and glutamate residues.

View Article and Find Full Text PDF

Biopharmaceuticals such as monoclonal antibodies are required to be rigorously characterized using a wide range of analytical methods. Various material properties must be characterized and well controlled to assure that clinically relevant features and critical quality attributes are maintained. A thorough understanding of analytical method performance metrics, particularly emerging methods designed to address measurement gaps, is required to assure methods are appropriate for their intended use in assuring drug safety, stability, and functional activity.

View Article and Find Full Text PDF

Nucleic acids are an increasingly popular platform for the development of biotherapeutics to treat a wide variety of illnesses, including diseases where traditional drug development efforts have failed. To date, there are 14 short oligonucleotide therapeutics and 2 messenger RNA (mRNA) vaccines approved by the U.S.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription.

View Article and Find Full Text PDF

The one-dimensional (1D) diffusion edited proton NMR method, Protein Fingerprint by Lineshape Enhancement (PROFILE) has been demonstrated to be suitable for higher order structure (HOS) characterization of protein therapeutics including monoclonal antibodies. Recent reports in the literature have demonstrated its advantages for HOS characterization over traditional methods such as circular dichroism and Fourier-transform infrared spectroscopy. Previously, we have demonstrated that the PROFILE method is complementary with high resolution 2D methyl correlated NMR methods and how both may be deployed as a multi-modal platform to further the utility of NMR for HOS characterization.

View Article and Find Full Text PDF

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling.

View Article and Find Full Text PDF

Biologics are complex pharmaceuticals that include formulated proteins, plasma products, vaccines, cell and gene therapy products, and biological tissues. These products are fragile and typically require cold chain for their delivery and storage. Delivering biologics, while maintaining the cold chain, whether standard (2°C to 8°C) or deepfreeze (as cold as -70°C), requires extensive infrastructure that is expensive to build and maintain.

View Article and Find Full Text PDF
Article Synopsis
  • Protein therapeutics require careful evaluation of their critical quality attributes (CQA) to ensure they fold correctly and do not aggregate, which is vital for safety and efficacy.
  • 2D NMR is a precise tool used to analyze the higher-order structure (HOS) of these proteins, facilitating monitoring throughout their lifecycle.
  • The study employs principal component analysis (PCA) to determine significant differences in HOS between protein samples, demonstrating that while robust class separation can be achieved, attention to details like baseline distortion is crucial for accurate classification.
View Article and Find Full Text PDF

Next-generation approaches for protein sequencing are now emerging that could have the potential to revolutionize the field in proteomics. One such sequencing method involves fluorescence-based imaging of immobilized peptides in which the N-terminal amino acid of a polypeptide is readout sequentially by a series of fluorescently labeled biomolecules. When selectively bound to a specific N-terminal amino acid, the NAAB (N-terminal amino acid binder) affinity reagent identifies the amino acid through its associated fluorescence tag.

View Article and Find Full Text PDF

Spatial distributions of animals can affect interactions with their natural enemies, such as parasites, and thus have important implications for host-parasite dynamics. While spatial variation in infection risk has been explored in many systems at the landscape scale, less attention has been paid to spatial structure at smaller scales. Here, we explore a hypothesized relationship between a common spatial variable, vertical position, and risk of parasite infection in a model aquatic system, larval frogs () and trematode (Digenea) parasites.

View Article and Find Full Text PDF

Characterization of the higher-order structure (HOS) of protein therapeutics, and in particular of monoclonal antibodies, by 2D H- C methyl correlated NMR has been demonstrated as precise and robust. Such characterization can be greatly enhanced when collections of spectra are analyzed using multivariate approaches such as principal component analysis (PCA), allowing for the detection and identification of small structural differences in drug substance that may otherwise fall below the limit of detection of conventional spectral analysis. A major limitation to this approach is the presence of aliphatic signals from formulation or excipient components, which result in spectral interference with the protein signal of interest; however, the recently described Selective Excipient Reduction and Removal (SIERRA) filter greatly reduces this issue.

View Article and Find Full Text PDF

The use of NMR spectroscopy has emerged as a premier tool to characterize the higher order structure of protein therapeutics and in particular IgG1 monoclonal antibodies (mAbs). Due to their large size, traditional H-N correlation experiments have proven exceedingly difficult to implement on mAbs, and a number of alternative techniques have been proposed, including the one-dimensional (1D) H protein fingerprint by line shape enhancement (PROFILE) method and the two-dimensional (2D) H-C methyl correlation-based approach. Both 1D and 2D approaches have relative strengths and weaknesses, related to the inherent sensitivity and resolution of the respective methods.

View Article and Find Full Text PDF

Quality attributes (QAs) are measureable parameters of a biologic that impact product safety and efficacy and are essential characteristics that are linked to positive patient health outcomes. One QA, higher order structure (HOS), is directly coupled to the function of protein biologics, and deviations in this QA may cause adverse effects. To address the critical need for HOS assessment, methods for analyzing structural fingerprints from 2D nuclear magnetic resonance spectroscopy (2D-NMR) spectra have been established for drug substances as large as monoclonal antibody therapeutics.

View Article and Find Full Text PDF

Protein therapeutics are vitally important clinically and commercially, with monoclonal antibody (mAb) therapeutic sales alone accounting for $115 billion in revenue for 2018.[1] In order for these therapeutics to be safe and efficacious, their protein components must maintain their high order structure (HOS), which includes retaining their three-dimensional fold and not forming aggregates. As demonstrated in the recent NISTmAb Interlaboratory nuclear magnetic resonance (NMR) Study[2], NMR spectroscopy is a robust and precise approach to address this HOS measurement need.

View Article and Find Full Text PDF

Proteomic analysis can be a critical bottleneck in cellular characterization. The current paradigm relies primarily on mass spectrometry of peptides and affinity reagents (i.e.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a class of biotherapeutic drugs designed as targeted therapies for the treatment of cancer. Among the challenges in generating an effective ADC is the choice of an effective conjugation site on the IgG. One common method to prepare site-specific ADCs is to engineer solvent-accessible cysteine residues into antibodies.

View Article and Find Full Text PDF

The higher order structure (HOS) of protein therapeutics is essential for drug safety and efficacy and can be evaluated by two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy at atomic resolution. Hn-N amide correlated and H-C methyl correlated NMR spectroscopies at natural isotopic abundance have been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies and show great promise for use in establishing drug substance structural consistency across manufacturing changes and in comparing a biosimilar to an originator reference product. Spectral fingerprints from Hn-Hα correlations acquired using 2D homonuclear proton-proton J-correlated NMR experiments provide a complementary approach for high-resolution assessment of the HOS of lower molecular weight (<25 kDa) protein therapeutics.

View Article and Find Full Text PDF
Article Synopsis
  • Parasites, particularly trematodes, significantly impact aquatic ecosystems, but more research is needed on how their infections spread within these environments.
  • This study investigated trematode prevalence in two snail species in the Illinois River watershed, focusing on local factors like water chemistry and landscape factors such as proximity to the river.
  • The research revealed that being close to the river and wetland areas increased infection rates in snails, with specific water quality features also affecting prevalence in one of the snail species, contributing to our understanding of environmental influences on parasite distributions.
View Article and Find Full Text PDF