Extensive research conducted in controlled laboratory settings has prompted an inquiry into how results can be generalized to real-world situations influenced by the subjects' actions. Virtual reality lends itself ideally to investigating complex situations but requires accurate classification of eye movements, especially when combining it with time-sensitive data such as EEG. We recorded eye-tracking data in virtual reality and classified it into gazes and saccades using a velocity-based classification algorithm, and we cut the continuous data into smaller segments to deal with varying noise levels, as introduced in the REMoDNav algorithm.
View Article and Find Full Text PDF