Annu Int Conf IEEE Eng Med Biol Soc
July 2020
Critical care units internationally contain medical devices that generate Big Data in the form of high speed physiological data streams. Great opportunities exist for systemic and reliable approaches for the analysis of high speed physiological data for clinical decision support. This paper presents the instantiation of a Big Data analytics based Health Analytics as-a-Service model.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
A significant amount of physiological data is generated from bedside monitors and sensors in neonatal intensive units (NICU) every second, however facilitating the ingestion of such data into multiple analytical processes in a real time streaming architecture remains a central challenge for systems that seek effective scaling of real-time data streams. In this paper we demonstrate an adaptive streaming application program interface (API) that provides real time streams of data for consumption by multiple analytics services enabling real-time exploration and knowledge discovery from live data streams. We have designed, developed and evaluated an adaptive API with multiple ingestion of data streamed out of bedside monitors that is passed to a middleware for standardization and structuring and finally distributed as a service for multiple analytical services to consume and perform further processing.
View Article and Find Full Text PDF