We describe a simple method to measure the back-bombardment heating temperature rise as a function of time in pulsed microwave thermionic guns using a fast rise-time InGaAs detector and optical pyrometer. Gaining knowledge of the nature of that temperature rise and the corresponding current out of the gun are the first steps in devising a scheme to counteract the back-bombardment heating which lengthens the micropulses, limits the macropulse length, and increases the energy spread of the emitted electron beam. We measured a temperature rise of 59 K in our LaB6 cathode which delivered a peak of 600 mA over a 5 μs RF pulse in our 0.
View Article and Find Full Text PDFThis report describes a mobile Raman lidar system that has been developed for spectral measurements of samples located remotely at ranges of hundreds of meters. The performance of this system has been quantitatively verified in a lidar calibration experiment using a hard target of standardized reflectance. A new record in detection range was achieved for remote Raman systems using 532 nm laser excitation.
View Article and Find Full Text PDFBackground And Objectives: We used the MARK III free electron laser (FEL) tuned to molecular vibrational absorbance maxima in the infrared (IR) wavelength range of 3.0-6.45 microm to study the effect of these various wavelengths and a power level of 5 mJ/2 microseconds macropulse on photoablation of CNS tissue.
View Article and Find Full Text PDF