Publications by authors named "John M Woulfe"

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how parkin, a protein, protects the brain from Parkinson's disease, particularly focusing on its cysteine residues that undergo redox reactions and posttranslational modifications.* -
  • Research findings reveal that aging leads to parkin becoming largely insoluble due to oxidation, particularly at specific cysteine residues, and this results in increased levels of harmful hydrogen peroxide (HO) in both mice and parkin-deficient human brains.* -
  • The protective effects of wild-type parkin against dopamine toxicity are emphasized, as it reduces HO levels and neutralizes reactive dopamine metabolites, while disease-linked parkin mutants do not exhibit these protective characteristics.*
View Article and Find Full Text PDF

Variants in the leucine-rich repeat kinase-2 () gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways.

View Article and Find Full Text PDF

Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview.

View Article and Find Full Text PDF

Braak and Del Tredici have proposed that typical Parkinson disease (PD) has its origins in the olfactory bulb and gastrointestinal tract. However, the role of the olfactory system has insufficiently been explored in the pathogeneses of PD and Alzheimer disease (AD) in laboratory models. Here, we demonstrate applications of a new method to process mouse heads for microscopy by sectioning, mounting, and staining whole skulls ('holocranohistochemistry').

View Article and Find Full Text PDF

Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies.

View Article and Find Full Text PDF

Background: Glioblastoma can occur either de novo or by the transformation of a low grade tumour; the majority of which harbor a mutation in isocitrate dehydrogenase (IDH1). Anaplastic tumours are high-grade gliomas that may represent the final step in the evolution of a secondary glioblastoma or the initial presentation of an early primary glioblastoma. We sought to determine whether pathological and/or radiological variables exist that can reliably distinguish IDH1-R132H-positive from IDH1-R132H-negative tumours and to identify variables associated with early mortality.

View Article and Find Full Text PDF

In vivo studies have shown that blood-brain barrier (BBB) dysfunction is involved in the course of Parkinson's disease (PD). However, these have lacked either anatomic definition or the ability to recognize minute changes in BBB integrity. Here, using histologic markers of serum protein, iron, and erythrocyte extravasation, we have shown significantly increased permeability of the BBB in the postcommissural putamen of PD patients.

View Article and Find Full Text PDF

Current concepts regarding the pathogenesis of Parkinson's disease support a model whereby environmental factors conspire with a permissive genetic background to initiate the disease. The identity of the responsible environmental trigger has remained elusive. There is incontrovertible evidence that aggregation of the neuronal protein alpha-synuclein is central to disease pathogenesis.

View Article and Find Full Text PDF

Parkinson's disease is characterized by the pathological aggregation of Alpha-synuclein. The dual-hit hypothesis proposed by Braak implicates the enteric nervous system as an initial site of α-synuclein aggregation with subsequent spread to the central nervous system. Regional variations in the spatial pattern or levels of α-synuclein along the enteric nervous system could have implications for identifying sites of onset of this pathogenic cascade.

View Article and Find Full Text PDF

Intranuclear rodlets (INRs) are structures present within the nuclei of human insulin-secreting beta cells of the endocrine pancreas. Their physiological significance, and whether they are altered in disease, is unknown. In the present study, the proportion of pancreatic beta cells containing INRs was examined in mouse models of type II diabetes and in a model with improved beta cell function.

View Article and Find Full Text PDF

Accumulating evidence suggests that deregulated cyclin-dependent kinase 5 (Cdk5) plays a critical part in neuronal death. However, the pathogenic targets of Cdk5 are not fully defined. Here we demonstrate that the Cdk5 activator p35 interacts directly with apurinic/apyrimidinic endonuclease 1 (Ape1), a protein crucial for base excision repair (BER) following DNA damage.

View Article and Find Full Text PDF

We reported previously that calpain-mediated Cdk5 activation is critical for mitochondrial toxin-induced dopaminergic death. Here, we report a target that mediates this loss. Prx2, an antioxidant enzyme, binds Cdk5/p35.

View Article and Find Full Text PDF

Neuronal intranuclear rodlets (INRs; rodlets of Roncoroni) have been known to neuroanatomists since the turn of the century. However, the functional and/or pathological significance of these structures has remained enigmatic. We recently demonstrated that these structures are immunoreactive for class III beta tubulin and for glucocorticoid receptor.

View Article and Find Full Text PDF

Cardiac involvement is commonly described in autopsy examinations of patients infected with human immunodeficiency virus (HIV). However, only a small percentage have clinically significant cardiac disease. Dilated cardiomyopathy is one of the most common HIV-related heart diseases.

View Article and Find Full Text PDF

Neuronal intranuclear rodlets were described in normal brain over a century ago, but their functional significance and pathological relevance is unknown. Here, we show co-localization of tubulin and glucocorticoid receptor-like immunoreactivity in these intranuclear inclusions in human brain. In addition, we provide evidence for a massive reduction in their areal density in Alzheimer's disease brain, but not in another common neurodegenerative condition, dementia with Lewy bodies.

View Article and Find Full Text PDF