We present a general method of constructing pseodopotentials from first-principles, all-electron, and full-potential electronic structure calculations of a solid. The method is applied to bcc Na, at low-temperature equilibrium volume. The essential steps of the method involve (i) calculating an all-electron Kohn-Sham eigenstate, (ii) replacing the oscillating part of the wave function (inside the muffin-tin spheres) of this state, with a smooth function, (iii) representing the smooth wave function in a Fourier series, and (iv) inverting the Kohn-Sham equation, to extract the pseudopotential that produces the state generated in steps i-iii.
View Article and Find Full Text PDFThe widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals.
View Article and Find Full Text PDFWe show that the AM05 functional [Armiento and Mattsson, Phys. Rev. B 72, 085108 (2005)] has the same excellent performance for solids as the hybrid density functionals tested in Paier et al.
View Article and Find Full Text PDF