Publications by authors named "John M Tang"

NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake.

View Article and Find Full Text PDF

Simultaneous measurements of the AC and DC conductances of alpha-hemolysin (alphaHL) ion channels and outer membrane protein F (OmpF) porins in dilute ionic solutions is described. AC conductance measurements were performed by applying a 10 mV rms AC voltage across a suspended planar bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in the absence and presence of the protein and detecting the AC current response using phase-sensitive lock-in techniques. The conductances of individual alphaHL channels and OmpF porins were measured in symmetric KCl solutions containing between 5 and 1000 mM KCl.

View Article and Find Full Text PDF

The in-plane ionic conductivity of the approximately 1-nm-thick aqueous layer separating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer membrane and a glass support was investigated. The aqueous layer conductivity was measured by tip-dip deposition of a POPC bilayer onto the surface of a 20- to 75-microm-thick glass membrane containing a single conical-shaped nanopore and recording the current-voltage (i-V) behavior of the glass membrane nanopore/POPC bilayer structure. The steady-state current across the glass membrane passes through the nanopore (45-480 nm radius) and spreads radially outward within the aqueous layer between the glass support and bilayer.

View Article and Find Full Text PDF