Publications by authors named "John M Senko"

The metabolic potential and corrosive activities of a fermentative bacterial enrichment culture from a natural gas transmission line were characterised. Three metagenome-assembled genomes (MAGs) attributable to Cytobacillus, Lacrimispora and Staphylococcus spp. were obtained.

View Article and Find Full Text PDF

The main sources of redox gradients supporting high-productivity life in the Europan and other icy ocean world oceans were proposed to be photolytically derived oxidants, such as reactive oxygen species (ROS) from the icy shell, and reductants (Fe(II), S(-II), CH, H) from bottom waters reacting with a (ultra)mafic seafloor. Important roadblocks to maintaining life, however, are that the degree of ocean mixing to combine redox species is unknown, and ROS damage biomolecules. Here, we envisage a unique solution using an acid mine drainage (AMD)-filled pit lakes analog system for the Europan ocean, which previous models predicted to be acidic.

View Article and Find Full Text PDF

Most cave formation requires mass separation from a host rock in a process that operates outward from permeable pathways to create the cave void. Given the poor solubility of Fe(III) phases, such processes are insufficient to account for the significant iron formation caves (IFCs) seen in Brazilian banded iron formations (BIF) and associated rock. In this study we demonstrate that microbially-mediated reductive Fe(III) dissolution is solubilizing the poorly soluble Fe(III) phases to soluble Fe(II) in the anoxic zone behind cave walls.

View Article and Find Full Text PDF

Previous work demonstrated that microbial Fe(III)-reduction contributes to void formation, and potentially cave formation within Fe(III)-rich rocks, such as banded iron formation (BIF), iron ore and canga (a surficial duricrust), based on field observations and static batch cultures. Microbiological Fe(III) reduction is often limited when biogenic Fe(II) passivates further Fe(III) reduction, although subsurface groundwater flow and the export of biogenic Fe(II) could alleviate this passivation process, and thus accelerate cave formation. Given that static batch cultures are unlikely to reflect the dynamics of groundwater flow conditions , we carried out comparative batch and column experiments to extend our understanding of the mass transport of iron and other solutes under flow conditions, and its effect on community structure dynamics and Fe(III)-reduction.

View Article and Find Full Text PDF

Thermoelectric power generation from coal requires large amounts of water, much of which is used for wet flue gas desulfurization (wFGD) systems that minimize sulfur emissions, and consequently, acid rain. The microbial communities in wFGDs and throughout thermoelectric power plants can influence system performance, waste processing, and the long term stewardship of residual wastes. Any microorganisms that survive in wFGD slurries must tolerate high total dissolved solids concentrations (TDS) and temperatures (50-60°C), but the inocula for wFGDs are typically from fresh surface waters (e.

View Article and Find Full Text PDF

Coal mine derived acid mine drainage (AMD) is formed when oxygenated water infiltrates mine voids and oxidizes FeS phases, generating acidic fluid rich in heavy metals, polluting thousands of miles of streams. Existing remediation options are cost-prohibitive and difficult to sustain. In some cases, AMD flows over previously pristine soil in thin sheets over terrestrial surface, enhancing AMD aeration and Fe(II) oxidizing activities, leading to oxidative Fe(II) precipitation from AMD, without any human intervention.

View Article and Find Full Text PDF

Fe(III)-rich deposits referred to as "iron mounds" develop when Fe(II)-rich acid mine drainage (AMD) emerges at the terrestrial surface, and aeration of the fluids induces oxidation of Fe(II), with subsequent precipitation of Fe(III) phases. As Fe(III) phases accumulate in these systems, O2 gradients may develop in the sediments and influence the distributions and extents of aerobic and anaerobic microbiological Fe metabolism, and in turn the solubility of Fe. To determine how intrusion of O2 into iron mound sediments influences microbial community composition and Fe metabolism, we incubated samples of these sediments in a column format.

View Article and Find Full Text PDF

Despite observations of steel corrosion in nitrate-reducing environments, processes of nitrate-dependent microbially influenced corrosion (MIC) remain poorly understood and difficult to identify. We evaluated carbon steel corrosion by MR-1 under nitrate-reducing conditions using a split-chamber/zero-resistance ammetry (ZRA) technique. This approach entails the deployment of two metal (carbon steel 1018 in this case) electrodes into separate chambers of an electrochemical split-chamber unit, where the microbiology or chemistry of the chambers can be manipulated.

View Article and Find Full Text PDF

Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel.

View Article and Find Full Text PDF

A system has been identified in which coal mine-derived acid mine drainage (AMD) flows as a 0.5-cm-deep sheet over the terrestrial surface. This flow regime enhances the activities of Fe(II) oxidizing bacteria, which catalyze the oxidative precipitation of Fe from AMD.

View Article and Find Full Text PDF

We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8-10 cm deep "iron mound" that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth.

View Article and Find Full Text PDF

To assess the microbiological changes that occur during the maturation of overburden that has been disturbed by surface mining of coal, a surface mining-disturbed overburden unit in southeastern Ohio, USA was characterized. Overburden from the same unit that had been disturbed for 37 and 16 years were compared to undisturbed soil from the same region. Overburden and soil samples were collected as shallow subsurface cores from each subregion of the mined area (i.

View Article and Find Full Text PDF

Flue gas desulfurization (FGD) systems are employed to remove SO(x) gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated.

View Article and Find Full Text PDF

The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.

View Article and Find Full Text PDF

We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalmine-derived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD.

View Article and Find Full Text PDF

A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions.

View Article and Find Full Text PDF

Microbiological reduction of soluble U(VI) to insoluble U(IV) is a means of preventing the migration of that element in groundwater, but the presence of nitrate in U(IV)-containing sediments leads to U(IV) oxidation and remobilizaton. Nitrite or iron(III) oxyhydroxides may oxidize U(IV) under nitrate-reducing conditions, and we determined the rate and extent of U(IV) oxidation by these compounds. Fe(III) oxidized U(IV) at a greater rate than nitrite (130 and 10 microM U(IV)/day, respectively).

View Article and Find Full Text PDF

An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations.

View Article and Find Full Text PDF

A procedure was developed for the quantitation of complexed U(VI) during studies on U(VI) bioremediation. These studies typically involve conversion of soluble or complexed U(VI) (oxidized) to U(IV) (the reduced form which is much less soluble). Since U(VI) freely exchanges between material adsorbed to the solid phase and the dissolved phase, uranium bioremediation experiments require a mass balance of U in both its soluble and adsorbed forms as well as in the reduced sediment bound phase.

View Article and Find Full Text PDF

The in-situ microbial reduction and immobilization of uranium was assessed as a means of preventing the migration of this element in the terrestrial subsurface. Uranium immobilization (putatively identified as reduction) and microbial respiratory activities were evaluated in the presence of exogenous electron donors and acceptors with field push-pull tests using wells installed in an anoxic aquifer contaminated with landfill leachate. Uranium(VI) amended at 1.

View Article and Find Full Text PDF