Spray dried dispersion particle size is a critical quality attribute that impacts bioavailability and manufacturability of the spray drying process and final dosage form. Substantial experimentation has been required to relate formulation and process parameters to particle size with the results limited to a single active pharmaceutical ingredient (API). This is the first study that demonstrates prediction of particle size independent of API for a wide range of formulation and process parameters at pilot and commercial scale.
View Article and Find Full Text PDFAcidic virus inactivation is commonly used during production of biotherapeutic products to provide virus safety in case of undetected virus contamination. Accurate pH measurement is required to ensure the product pH reaches a virus-inactivating level (typically 3.5-3.
View Article and Find Full Text PDFAKT and its substrate BAD have been shown to promote prostate cancer cell survival. Agonists, such as carbachol, and hormones that increase intracellular calcium concentration can activate AKT leading to cancer cell survival. The LNCaP prostate cancer cells express the carbachol-sensitive M(3) -subtype of G protein-coupled receptors that cause increases in intracellular calcium and activate the family of Ca(2+) /calmodulin-dependent protein kinases (CaM Ks).
View Article and Find Full Text PDFMol Cell Biochem
February 2010
Previous studies on MCF-7 breast cancer cells have shown that the G-protein coupled receptor (GPCR) agonist carbachol increases intracellular calcium levels and the activation of extracellular signal-regulated kinase (ERK). Calcium and calmodulin regulate the calcium/calmodulin-dependent kinase (CaM kinase) family of proteins that have been proposed to regulate ERK and gene transcription. Our results suggest that both estrogen (E2) and carbachol treatment of MCF-7 breast cancer cells trigger phosphorylation of ERK1/2 and the transcription factor Elk-1.
View Article and Find Full Text PDFIntracellular Ca2+ and protein phosphorylation play pivotal roles in long-term potentiation (LTP), a cellular model of learning and memory. Ca2+ regulates multiple intracellular pathways, including the calmodulin-dependent kinases (CaMKs) and the ERKs (extracellular signal-regulated kinases), both of which are required for LTP. However, the mechanism by which Ca2+ activates ERK during LTP remains unknown.
View Article and Find Full Text PDFElevated intracellular Ca(2+) triggers numerous signaling pathways including protein kinases such as the calmodulin-dependent kinases (CaMKs) and the extracellular signal-regulated kinases (ERKs). In the present study we examined Ca(2+)-dependent "cross-talk" between these two protein kinase families. Using a combination of pharmacological inhibitors and dominant-negative kinases (dnKinase), we identified a requirement for CaMKK acting through CaMKI in the stimulation of ERKs upon depolarization of the neuroblastoma cell line, NG108.
View Article and Find Full Text PDFThe Src tyrosine kinase is necessary for activation of extracellular signal-regulated kinases (ERKs) by the beta-adrenergic receptor agonist, isoproterenol. In this study, we examined the role of Src in the stimulation of two small G proteins, Ras and Rap1, that have been implicated in isoproterenol's signaling to ERKs. We demonstrate that the activation of isoproterenol of both Rap1 and Ras requires Src.
View Article and Find Full Text PDFHormonal stimulation of cyclic adenosine monophosphate (cAMP) and the cAMP-dependent protein kinase PKA regulates cell growth by multiple mechanisms. A hallmark of cAMP is its ability to stimulate cell growth in many cell types while inhibiting cell growth in others. In this review, the cell type-specific effects of cAMP on the mitogen-activated protein (MAP) kinase (also called extracellular signal-regulated kinase, or ERK) cascade and cell proliferation are examined.
View Article and Find Full Text PDFIn fibroblast cells, cAMP antagonizes growth factor activation of ERKs and cell growth via PKA and the small G protein Rap1. We demonstrate here that PKA's activation of Rap1 was mediated by the Rap1 guanine nucleotide exchange factor C3G, the adaptor Crk-L, the scaffold protein Cbl, and the tyrosine kinase Src. Src was required for cAMP activation of Rap1 and the inhibition of ERKs and cell growth.
View Article and Find Full Text PDF