Background: To conserve personal protective equipment (PPE) and reduce exposure to potentially infected COVID-19 patients, several Californian facilities independently implemented a method of acquiring portable chest radiographs through glass barriers that was originally developed by the University of Washington.
Methods: This work quantifies the transmission of radiation through a glass barrier using six radiographic systems at five facilities. Patient entrance air kerma (EAK) and effective dose were estimated both with and without the glass barrier.
Objective: The purpose of this article is to quantitatively investigate the accuracy and performance of dual-energy CT (DECT) material density images and to calculate the areal bone mineral density (aBMD) for comparison with dual-energy x-ray absorptiometry (DEXA).
Materials And Methods: A rapid-kilovoltage-switching DECT scanner was used to create material density images of various two-material phantoms of known concentrations under different experimental conditions. They were subsequently also scanned by single-energy CT and DEXA.
Background: We performed in vivo micro-computed tomography (micro-CT) imaging using a novel carbon nanotube (CNT)-based x-ray source to detect calcification in the aortic arch of apolipoprotein E (apoE)-null mice.
Methods And Results: We measured calcification volume of aortic arch plaques using CNT-based micro-CT in 16- to 18-month-old males on 129S6/SvEvTac and C57BL/6J genetic backgrounds (129-apoE KO and B6-apoE KO). Cardiac and respiratory gated images were acquired in each mouse under anesthesia.