Publications by authors named "John M Regan"

Excessive amounts of nitrogen (N) and phosphorus (P) can lead to eutrophication in water sources. Woodchip bioreactors have shown success in removing N from agricultural runoff, but less is known regarding P removal. Woodchip bioreactors are subsurface basins filled with woodchips installed downgradient of agricultural land to collect and treat drainage runoff.

View Article and Find Full Text PDF

Background: The aim of this study was to increase the accessibility and accelerate the breakdown of lignocellulosic biomass to methane in an anaerobic fermentation system by mechanical cotreatment: milling during fermentation, as an alternative to conventional pretreatment prior to biological deconstruction. Effluent from a mesophilic anaerobic digester running with unpretreated senescent switchgrass as the predominant carbon source was collected and subjected to ball milling for 0.5, 2, 5 and 10 min.

View Article and Find Full Text PDF

Although metal redox reactions in soils can strongly affect carbon mineralization and other important soil processes, little is known about temporal variations in this redox cycling. Recently, potentiostatically poised electrodes (fixed-potential electrodes) have shown promise for measuring the rate of oxidation and reduction at a specific reduction potential in situ in riparian soils. Here for the first time, we used these electrodes in unsaturated soils to explore the fine-scale temporal redox fluctuations of both iron and manganese in response to environmental conditions.

View Article and Find Full Text PDF

During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a -dominated mixed microbial community derived from a wastewater inoculum remains the standard. On the other hand, cathode performance is still one of the main limitations for MFCs, and the enrichment of a beneficial cathodic biofilm emerges as an alternative to increase its performance.

View Article and Find Full Text PDF

Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality.

View Article and Find Full Text PDF

Ferricyanide is often used in microbial fuel cells (MFCs) to avoid oxygen intrusion that occurs with air cathodes. However, MFC internal resistances using ferricyanide can be larger than those with air cathodes even though ferricyanide results in higher power densities. Using a graphite fiber brush cathode and a ferricyanide catholyte (FC-B) the internal resistance was 62 ± 4 mΩ m, with 84 ± 8 mΩ m obtained using ferricyanide and a flat carbon paper cathode (FC-F) and only 51 ± 1 mΩ m using a 70% porosity air cathode (A-70).

View Article and Find Full Text PDF

Exoelectrogenic communities for bioelectrochemical systems such as microbial fuel cells (MFCs) are usually enriched from microbial consortia of municipal wastewater treatment plants and other circumneutral and mesophilic environments. Thus, the study of extreme environments offers an enormous potential to find new exoelectrogens and expand the functionality and applications of MFC technology. In this study, a microbial community previously enriched from acid mine drainage (AMD) sediments was used as inoculum in single-chamber MFCs operated at pH 3.

View Article and Find Full Text PDF

The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.

View Article and Find Full Text PDF

Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ) 0.

View Article and Find Full Text PDF

In bioelectrochemical systems, exoelectrogenic bacteria respire with anode electrodes as their extracellular electron acceptor; therefore, lower anode potentials can reduce the energy gain to each microbe and select against ones that are not able to respire at a lower potential range. Often fully developed anode communities are compared across bioelectrochemical systems with set anode potentials or fixed external resistances as different operational conditions. However, the comparative effect of the resulting constantly low versus dynamically low anode potentials on the development of anode microbial communities as well as the final cathode microbial communities has not been directly demonstrated.

View Article and Find Full Text PDF

Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs.

View Article and Find Full Text PDF

Alternative metabolic options of exoelectrogenic biofilms in bioelectrochemical systems (BESs) are important not only to explain the fundamental ecology and performance of these systems but also to develop reliable integrated nutrient removal strategies in BESs, which potentially involve substrates or intermediates that support/induce those alternative metabolisms. This research focused on dissimilatory nitrate reduction as an alternative metabolism to dissimilatory anode reduction. Using the exoelectrogenic nitrate reducer Geobacter metallireducens, the critical conditions controlling those alternative metabolisms were investigated in two-chamber, potentiostatically controlled BESs at various anode potentials and biofilm thicknesses and challenged over a range of nitrate concentrations.

View Article and Find Full Text PDF

Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.

View Article and Find Full Text PDF

Eukaryotic algae and cyanobacteria produce hydrogen under anaerobic and limited aerobic conditions. Here we show that novel microalgal strains (Chlorella vulgaris YSL01 and YSL16) upregulate the expression of the hydrogenase gene (HYDA) and simultaneously produce hydrogen through photosynthesis, using CO2 as the sole source of carbon under aerobic conditions with continuous illumination. We employ dissolved oxygen regimes that represent natural aquatic conditions for microalgae.

View Article and Find Full Text PDF

Rivers in northern Chile have arsenic (As) concentrations at levels that are toxic for humans and other organisms. Microorganism-mediated redox reactions have a crucial role in the As cycle; the microbial oxidation of As (As(III) to As(V)) is a critical transformation because it favors the immobilization of As in the solid phase. We studied the role of microbial As oxidation for controlling the mobility of As in the extreme environment found in the Chilean Altiplano (i.

View Article and Find Full Text PDF

Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57 V and CE = 22% vs.

View Article and Find Full Text PDF

Background: Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for microbial fermentation to produce ethanol and hydrogen. The effect of sonication condition was quantitatively evaluated with emphases on the characterization of carbohydrate components in microalgal suspension and on subsequent production of fermentative bioenergy.

View Article and Find Full Text PDF

Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2).

View Article and Find Full Text PDF

Disinfection by-product formation potentials (DBPFPs) in wastewater effluents from eight wastewater treatment plants (WWTPs) were investigated. In addition, a WWTP with one primary effluent and two different biological treatment processes was selected for a comparative study. Formation potential tests were carried out to determine the levels of DBP precursors in wastewater.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment.

View Article and Find Full Text PDF

Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm.

View Article and Find Full Text PDF

pH oppositely influences anode and cathode performance in microbial fuel cells. The differential electrochemical effects at each electrode and the resultant full-cell performance were analyzed in medium pH from 6.0 to 8.

View Article and Find Full Text PDF

Anaerobic digester failure due to a pH drop may be overcome with the use of an acidotolerant methanogenic community. To test this, lab-scale reactors were inoculated from acidic bog sediments, a municipal sludge digester, or a combination of these inocula and challenged with glucose pulses without pH control. Only the bog reactor survived the first glucose shock, and the methanogen community was dominated by members of the acidic Fen Cluster.

View Article and Find Full Text PDF

Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the different microbial populations present in these exoelectrogenic biofilms. Rapid utilization of fermentation end products by exoelectrogens (typically Geobacter species) relieves feedback inhibition for the fermentative consortia, allowing for rapid metabolism of organics.

View Article and Find Full Text PDF

The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant time scales that are insufficient to account for these variable biocatalyst effects. This study investigated the electrochemical performance and the development of anode biofilm architecture under different external loadings, with duplicate acetate-fed single-chamber MFCs stabilized at each resistance for microbially relevant time scales. Power density curves from these steady-state reactors generally showed comparable profiles despite the fact that anode biofilm architectures and communities varied considerably, showing that steady-state biofilm differences had little influence on electrochemical performance until the steady-state external loading was much larger than the reactor internal resistance.

View Article and Find Full Text PDF