Publications by authors named "John M Nelson"

Smoking is the number one predictor for the development of periodontal disease. Consequently, electronic cigarette (ECIG) use has prompted investigations into the health-related risks induced by ECIG-generated aerosol on oral commensal bacteria as compared to cigarette smoke. Since E-liquid contains fewer constituents than smoke, we hypothesize that growth media containing E-liquid or aerosol has less impact on oral commensal streptococci than cigarette smoke.

View Article and Find Full Text PDF

Unlabelled: E-liquid manufacturers are under scrutiny concerning the purity and concentration accuracy of nicotine and the minor nicotine-related alkaloids (NRAs) packaged in their products. In this communication we report concentrations of nicotine and five NRAs (nornicotine, cotinine, anabasine, anatabine, myosmine) from locally purchased E-liquids.

Methods: Five brands of E-liquids (three bottles each) were purchased locally.

View Article and Find Full Text PDF

The use of electronic cigarettes (ECIG) has become very common. Consequently, critical analysis of the biological effects of ECIG aerosol deserves attention. Flavorless ECIG aerosol is known to comprise fewer harmful constituents than cigarette smoke.

View Article and Find Full Text PDF

While ECIGs are under scrutiny concerning safety, particularly in reference to the physiological impact that aerosolized ECIG liquid (E-liquid) may have on respiratory tissues, others believe that ECIGs are a "Harm Reduction" alternative to conventional cigarettes. Previous studies investigating ciliated respiratory epithelium indicate that smoking shortens cilia length, reduces cilia beat frequency and disrupts respiratory epithelium, which most likely contributes to the inhibition of mucocilliary clearance. Monitoring mucous clearance of respiratory tissues exposed to ECIG-generated aerosol or conventional cigarette smoke, as indexed by mucous transport velocity (MTV), is one way to gauge the impact aerosol and smoke have on the respiratory tract.

View Article and Find Full Text PDF

Tetrahydro-1,4-azaborines were accessed by hydroboration of N,N-diprenyltoluenesulfonamide 4. Conversion to the methylborinates 11 and 12 followed by heating with l-alanine and crystallization afforded (R,R,S)-13 (27%). Reduction of borinic acid (R,R)-18 with Soderquist's KH* gave (R,R)-19, and hydride abstraction by TMSCl in the presence of alkenes resulted in hydroboration, 84-86% ee for (Z)-alkenes, but (E)-alkenes or 1,1-disubstituted alkenes gave <5% ee.

View Article and Find Full Text PDF

ECIGs are currently under scrutiny concerning their safety, particularly in reference to the impact ECIG liquids (E-liquids) have on human health. One concern is that aerosolized E-liquids contain trace metals that could become trapped in respiratory tissues and induce pathology. To mimic this trapping, peristaltic pumps were used to generate and transport aerosol onto mixed cellulose ester (MCE) membranes where aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were subsequently captured and quantified.

View Article and Find Full Text PDF

The palladium-catalyzed coupling of an aziridinylzinc chloride intermediate with alkenyl and aryl halides has been demonstrated. The method provides products with retention of aziridine stereochemistry. The utility of the coupling procedure is illustrated in the synthesis of structures related to l-furanomycin.

View Article and Find Full Text PDF

A broad experimental campaign to validate the final epithermal neutron beam design for the BNCT facility constructed at the University of Birmingham concluded in November 2003. The final moderator and facility designs are overviewed briefly, followed by a summary of the dosimetric methods and presentation of a small subset of the results from this campaign. The dual ionisation chamber technique was used together with foil activation to quantify the fast neutron, photon, and thermal neutron beam dose components in a large rectangular phantom exposed to the beam with a 12 cm diameter beam delimiter in place.

View Article and Find Full Text PDF