Publications by authors named "John M Mendenhall"

Long-term potentiation (LTP) has become a standard model for investigating synaptic mechanisms of learning and memory. Increasingly, it is of interest to understand how LTP affects the synaptic information storage capacity of the targeted population of synapses. Here, structural synaptic plasticity during LTP was explored using three-dimensional reconstruction from serial section electron microscopy.

View Article and Find Full Text PDF

Microtubules deliver essential resources to and from synapses. Three-dimensional reconstructions in rat hippocampus reveal a sampling bias regarding spine density that needs to be controlled for dendrite caliber and resource delivery based on microtubule number. The strength of this relationship varies across dendritic arbors, as illustrated for area CA1 and dentate gyrus.

View Article and Find Full Text PDF

An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite.

View Article and Find Full Text PDF

The pulsatile release of GnRH is crucial for normal reproductive physiology across the life cycle, a process that is regulated by hypothalamic neurotransmitters. GnRH terminals co-express the vesicular glutamate transporter 2 (vGluT2) as a marker of a glutamatergic phenotype. The current study sought to elucidate the relationship between glutamate and GnRH nerve terminals in the median eminence--the site of GnRH release into the portal capillary vasculature.

View Article and Find Full Text PDF

Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation, and comparisons were made with control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo.

View Article and Find Full Text PDF

Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm(2) (65.

View Article and Find Full Text PDF

With recent improvements in instrumentation and computational tools, serial section electron microscopy has become increasingly straightforward. A new method for imaging ultrathin serial sections is developed based on a field emission scanning electron microscope fitted with a transmitted electron detector. This method is capable of automatically acquiring high-resolution serial images with a large field size and very little optical and physical distortions.

View Article and Find Full Text PDF

The critical brain areas and molecular mechanisms involved in drug abuse and dependence have been extensively studied. Drug-induced persistent behaviors such as sensitization, tolerance, or relapse, however, far outlast any previously reported mechanisms. A challenge in the field of addiction, therefore, has been to identify drug-induced changes in brain circuitry that may subserve long-lasting changes in behavior.

View Article and Find Full Text PDF

The decapeptide gonadotropin-releasing hormone (GnRH), which regulates reproduction in all vertebrates, is stored in, and secreted from, large dense-core secretory vesicles in nerve terminals in the median eminence. GnRH is released from these terminals with biological rhythms that are critical for the maintenance of normal reproduction. During reproductive aging in female rats, there is a loss of GnRH pulses and a diminution of the GnRH surge.

View Article and Find Full Text PDF

About 1000 hypothalamic neurons synthesize and release gonadotropin-releasing hormone (GnRH), the master molecule of reproduction in all mammals. At the level of the median eminence at the base of the brain, where GnRH and other hypothalamic releasing hormones are secreted into the capillary system leading to the anterior pituitary gland, there is non-synaptic regulation of neurohormone release by a number of central neurotransmitters. For example, glutamate, the major excitatory amino acid in the brain, directly regulates GnRH release from nerve terminals via NMDA receptors (NMDARs).

View Article and Find Full Text PDF

The formation of synaptic connections with target cells and maintenance of axons are highly regulated and crucial for neuronal function. The atypical cadherin and G-protein-coupled receptor Flamingo and its orthologs in amphibians and mammals have been shown to regulate cell polarity, dendritic and axonal growth, and neural tube closure. However, the role of Flamingo in synapse formation and function and in axonal health remains poorly understood.

View Article and Find Full Text PDF

Previous studies identified various mechanisms of light scattering reduction in tissue induced by chemical agents. Our results suggest that dehydration is an important mechanism of optical clearing in collagenous and cellular tissue. Photographic and optical coherence tomography images indicate that air-immersed skin and tendon specimens become similarly transparent to glycerol-immersed specimens.

View Article and Find Full Text PDF

Striatal cholinergic interneurons located in the dorsal striatum and nucleus accumbens are amenable to influences of the dopaminergic mesolimbic pathway, which is a pathway involved in reward and reinforcement and targeted by several drugs of abuse. Dopamine and acetylcholine neurotransmission and their interactions are essential to striatal function, and disruptions to these systems lead to a variety of clinical disorders. Dopamine regulates acetylcholine release through dopamine receptors that are localized directly on striatal cholinergic interneurons.

View Article and Find Full Text PDF