Despite recent progress, bacterial degradation of lignin is not completely understood. To address the mechanisms that bacteria from unknown taxonomic groups use to perform lignin-monomer degradation, functional analysis of bacterial metagenome-assembled genomes from soil-derived consortia enriched for microorganisms capable of degrading lignin was performed. A total of 232 metagenome-assembled genomes were recovered.
View Article and Find Full Text PDFThe copy number of a plasmid is linked to its functionality, yet there have been few attempts to optimize higher-copy-number mutants for use across diverse origins of replication in different hosts. We use a high-throughput growth-coupled selection assay and a directed evolution approach to rapidly identify origin of replication mutations that influence copy number and screen for mutants that improve Agrobacterium-mediated transformation (AMT) efficiency. By introducing these mutations into binary vectors within the plasmid backbone used for AMT, we observe improved transient transformation of Nicotiana benthamiana in four diverse tested origins (pVS1, RK2, pSa and BBR1).
View Article and Find Full Text PDFThe valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries.
View Article and Find Full Text PDFR. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R.
View Article and Find Full Text PDFEfficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R.
View Article and Find Full Text PDFMicrobial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals.
View Article and Find Full Text PDFMultidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling.
View Article and Find Full Text PDFThe range of applications for industrial hemp has consistently increased in various sectors over the years. For example, hemp hurd can be used as a resource to produce biodegradable packaging materials when incorporated into a fungal mycelium composite, a process that has been commercialized. Although these packaging materials can be composted after usage, they may present an opportunity for valorization in a biorefinery setting.
View Article and Find Full Text PDFThe efficient utilization of lignin, the direct source of renewable aromatics, into value-added renewable chemicals is an important step towards sustainable biorefinery practices. Nevertheless, owing to the random heterogeneous structure and limited solubility, lignin utilization has been primarily limited to burning for energy. The catalytic depolymerization of lignin has been proposed and demonstrated as a viable route to sustainable biorefinery, however, low yields and poor selectivity of products, high char formation, and limited to no recycling of transition-metal-based catalyst involved in lignin depolymerization demands attention to enable practical-scale lignocellulosic biorefineries.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2022
Background: Lignocellulosic resources are promising feedstocks for the manufacture of bio-based products and bioenergy. However, the inherent recalcitrance of biomass to conversion into simple sugars currently hinders the deployment of advanced bioproducts at large scale. Lignin is a primary contributor to biomass recalcitrance as it protects cell wall polysaccharides from degradation and can inhibit hydrolytic enzymes via non-productive adsorption.
View Article and Find Full Text PDFBackground: Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R.
View Article and Find Full Text PDFIn this study, organic acids were demonstrated as a promising carbon source for bisabolene production by the non-conventional yeast, Rhodosporidium toruloides, at microscale with a maximum titre of 1055 ± 7 mg/L. A 125-fold scale-up of the optimal process, enhanced bisabolene titres 2.5-fold to 2606 mg/L.
View Article and Find Full Text PDFGrowing interest in sustainable sources of chemicals and energy from renewable and reliable sources has stimulated the design and synthesis of renewable Schiff-base (iminium) ionic liquids (ILs) to replace fossil-derived ILs. In this study, we report on the synthesis of three unique iminium-acetate ILs from lignin-derived aldehyde for a sustainable “future” lignocellulosic biorefinery. The synthesized ILs contained only imines or imines along with amines in their structure; the ILs with only imines group exhibited better pretreatment efficacy, achieving >89% sugar release.
View Article and Find Full Text PDFEngineering bioenergy crops to accumulate coproducts can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase () to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-d-arabino-heptulonate-7-phosphate synthase () was also introduced in an attempt to increase the carbon flux through the shikimate pathway.
View Article and Find Full Text PDFPlants and microbes share common metabolic pathways for producing a range of bioproducts that are potentially foundational to the future bioeconomy. However, accumulation and microbial production of bioproducts have never been systematically compared on an economic basis to identify optimal routes of production. A detailed technoeconomic analysis of four exemplar compounds (4-hydroxybenzoic acid [4-HBA], catechol, muconic acid, and 2-pyrone-4,6-dicarboxylic acid [PDC]) is conducted with the highest reported yields and accumulation rates to identify economically advantaged platforms and breakeven targets for plants and microbes.
View Article and Find Full Text PDFhas been successfully employed for the industrial production of amino acids and other bioproducts, partially due to its native ability to utilize a wide range of carbon substrates. We demonstrated as an efficient microbial host for utilizing diverse carbon substrates present in biomass hydrolysates, such as glucose, arabinose, and xylose, in addition to its natural ability to assimilate lignin-derived aromatics. As a case study to demonstrate its bioproduction capabilities, L-lactate was chosen as the primary fermentation end product along with acetate and succinate.
View Article and Find Full Text PDFBackground: The development of bioenergy crops with reduced recalcitrance to enzymatic degradation represents an important challenge to enable the sustainable production of advanced biofuels and bioproducts. Biomass recalcitrance is partly attributed to the complex structure of plant cell walls inside which cellulose microfibrils are protected by a network of hemicellulosic xylan chains that crosslink with each other or with lignin via ferulate (FA) bridges. Overexpression of the rice acyltransferase OsAT10 is an effective bioengineering strategy to lower the amount of FA involved in the formation of cell wall crosslinks and thereby reduce cell wall recalcitrance.
View Article and Find Full Text PDFHydroxycinnamic acids such as p-coumaric acid (CA) are chemically linked to lignin in grassy biomass with fairly labile ester bonds and therefore represent a straightforward opportunity to extract and valorize lignin components. In this work, we investigated the enzymatic conversion of CA extracted from lignocellulose to 4-vinylphenol (4VP) by expressing a microbial phenolic acid decarboxylase in Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The performance of the recombinant strains was evaluated in response to the substrate concentration in rich medium or a lignin liquor and the addition of an organic overlay to perform a continuous product extraction in batch cultures.
View Article and Find Full Text PDFLignin is nature's largest source of phenolic compounds. Its recalcitrance to enzymatic conversion is still a limiting step to increase the value of lignin. Although bacteria are able to degrade lignin in nature, most studies have focused on lignin degradation by fungi.
View Article and Find Full Text PDFBackground: Mitigation of climate change requires that new routes for the production of fuels and chemicals be as oil-independent as possible. The microbial conversion of lignocellulosic feedstocks into terpene-based biofuels and bioproducts represents one such route. This work builds upon previous demonstrations that the single-celled carotenogenic basidiomycete, Rhodosporidium toruloides, is a promising host for the production of terpenes from lignocellulosic hydrolysates.
View Article and Find Full Text PDFAn oleaginous yeast is a promising host for converting lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-omics analysis of lignocellulosic carbon utilization in and reconstructed the genome-scale metabolic network of . High-quality metabolic network models for model organisms and orthologous protein mapping were used to build a draft metabolic network reconstruction.
View Article and Find Full Text PDFTargeted proteomics is a mass spectrometry-based protein quantification technique with high sensitivity, accuracy, and reproducibility. As a key component in the multi-omics toolbox of systems biology, targeted liquid chromatography-selected reaction monitoring (LC-SRM) measurements are critical for enzyme and pathway identification and design in metabolic engineering. To fulfill the increasing need for analyzing large sample sets with faster turnaround time in systems biology, high-throughput LC-SRM is greatly needed.
View Article and Find Full Text PDFBackground: In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels.
View Article and Find Full Text PDF