The deep continental crust represents a vast potential habitat for microbial life where its activity remains poorly constrained. Organic acids like acetate are common in these ecosystems, but their role in the subsurface carbon cycle - including the mechanism and rate of their turnover - is still unclear. Here, we develop an isotope-exchange 'clock' based on the abiotic equilibration of H-isotopes between acetate and water, which can be used to define the maximum in situ acetate residence time.
View Article and Find Full Text PDFCarbon capture and storage (CCS) of CO is a key technology for substantially mitigating global greenhouse gas emissions. Determining the biogeochemical processes in host rocks after CO injection informs the viability of carbon storage as a long-term sink for CO, the complexity of reservoir CH cycling, as well as the direct and indirect environmental impacts of this strategy. The doubly substituted ('clumped') isotopologues of methane (CHD and CHD) provide novel insights into methane origins and post-generation processing.
View Article and Find Full Text PDFSubtle variations in stable isotope ratios at natural abundance are challenging to measure but can yield critical insights into biological, physical, and geochemical processes. Well-established methods, particularly multicollector, gas-source, or plasma isotope ratio mass spectrometry, are the gold standard for stable isotope measurement, but inherent limitations in these approaches make them ill-suited to determining site-specific and multiply substituted isotopic abundances of all but a few compounds or to characterizing larger intact molecules. Fourier transform mass spectrometry, namely, Orbitrap mass spectrometry, has recently demonstrated the ability to measure natural abundance isotope ratios with chemically informative accuracy and precision.
View Article and Find Full Text PDFNitrous oxide (NO), a potent greenhouse gas, can be generated by compositionally complex microbial populations in diverse contexts. Accurately tracking the dominant biological sources of NO has the potential to improve our understanding of NO fluxes from soils as well as inform the diagnosis of human infections. Isotopic "Site Preference" (SP) values have been used towards this end, as bacterial and fungal nitric oxide reductases produce NO with different isotopic fingerprints.
View Article and Find Full Text PDFThe history of Earth's carbon cycle reflects trends in atmospheric composition convolved with the evolution of photosynthesis. Fortunately, key parts of the carbon cycle have been recorded in the carbon isotope ratios of sedimentary rocks. The dominant model used to interpret this record as a proxy for ancient atmospheric CO is based on carbon isotope fractionations of modern photoautotrophs, and longstanding questions remain about how their evolution might have impacted the record.
View Article and Find Full Text PDFThe Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples.
View Article and Find Full Text PDFRationale: Position-specific C/ C ratios within amino acids remain largely unexplored in environmental samples due to methodological limitations. We hypothesized that natural-abundance isotope patterns in serine may serve as a proxy for plant metabolic fluxes including photorespiration. Here we describe an Orbitrap method optimized for the position-specific carbon isotope analysis of serine to test our hypothesis and discuss the generalizability of this method to other amino acids.
View Article and Find Full Text PDFStable hydrogen isotope compositions (H/H ratios) have been an invaluable tool for studying biogeochemical processes in nature, but the diversity of molecular targets amenable to such analysis is limited. Here, we demonstrate a new technique for measuring δH of biomolecules via Orbitrap mass spectrometry (MS) using acetate as a model analyte. Acetate was chosen as a target molecule because its production and consumption are central to microbial carbon cycling, yet the mechanisms behind acetate turnover remain poorly understood.
View Article and Find Full Text PDFThe stable isotopes of sulfate, nitrate, and phosphate are frequently used to study geobiological processes of the atmosphere, ocean, as well as land. Conventionally, the isotopes of these and other oxyanions are measured by isotope-ratio sector mass spectrometers after conversion into gases. Such methods are prone to various limitations on sensitivity, sample throughput, or precision.
View Article and Find Full Text PDFThe alanine transaminase enzyme catalyzes the transfer of an amino group from alanine to α-ketoglutarate to produce pyruvate and glutamate. Isotope fractionation factors (IFFs) for the reaction HNCH(CH)COO + OOCCHCHC(O)COO ↔ CHC(O)COO + HNCH(CHCHCOO)COO (zwitterionic neutral alanine + doubly deprotonated α-ketoglutarate ↔ pyruvate + zwitterionic glutamate anion) were calculated from the partition functions of explicitly and implicitly solvated molecules at 298 K. Calculations were done for alanine (noncharge separated, zwitterion, deprotonated), pyruvic acid (neutral, deprotonated), glutamic acid (noncharge separated, zwitterion, deprotonated, doubly deprotonated), and α-ketoglutaric acid (neutral, deprotonated, doubly deprotonated).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2018
The O/O of calcite fossils increased by ∼8‰ between the Cambrian and present. It has long been controversial whether this change reflects evolution in the δO of seawater, or a decrease in ocean temperatures, or greater extents of diagenesis of older strata. Here, we present measurements of the oxygen and ‟clumped" isotope compositions of Phanerozoic dolomites and compare these data with published oxygen isotope studies of carbonate rocks.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2016
Rationale: Bulk and position-specific stable isotope characterization of nitrous oxide represents one of the most powerful tools for identifying its environmental sources and sinks. Constraining (14) N(15) N(18) O and (15) N(14) N(18) O will add two new dimensions to our ability to uniquely fingerprint N2 O sources.
Methods: We describe a technique to measure six singly and doubly substituted isotopic variants of N2 O, constraining the values of δ(15) N, δ(18) O, ∆(17) O, (15) N site preference, and the clumped isotopomers (14) N(15) N(18) O and (15) N(14) N(18) O.
The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean.
View Article and Find Full Text PDFOur understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms.
View Article and Find Full Text PDFPerchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition.
View Article and Find Full Text PDFSeveral large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation.
View Article and Find Full Text PDFThe discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5 GPa and 1,200 °C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases.
View Article and Find Full Text PDFMany aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood--in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes ((32)S, (33)S, and (34)S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.
View Article and Find Full Text PDFThe East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models.
View Article and Find Full Text PDFThe 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2012
We present evidence that a rock sample found in the Koryak Mountains in Russia and containing icosahedrite, an icosahedral quasicrystalline phase with composition Al(63)Cu(24)Fe(13), is part of a meteorite, likely formed in the early solar system about 4.5 Gya. The quasicrystal grains are intergrown with diopside, forsterite, stishovite, and additional metallic phases [khatyrkite (CuAl(2)), cupalite (CuAl), and β-phase (AlCuFe)].
View Article and Find Full Text PDF