Purpose: To develop and validate a system that could perform automated diagnosis of common and rare neurologic diseases involving deep gray matter on clinical brain MRI studies.
Materials And Methods: In this retrospective study, multimodal brain MRI scans from 212 patients (mean age, 55 years ± 17 [standard deviation]; 113 women) with 35 neurologic diseases and normal brain MRI scans obtained between January 2008 and January 2018 were included (110 patients in the training set, 102 patients in the test set). MRI scans from 178 patients (mean age, 48 years ± 17; 106 women) were used to supplement training of the neural networks.
Objective: Brain-computer interfaces (BCI) use measures of brain activity to convey a user's intent without the need for muscle movement. Hybrid designs, which use multiple measures of brain activity, have been shown to increase the accuracy of BCIs, including those based on EEG signals reflecting covert attention. Our study examined whether incorporating a measure of the P3 response improved the performance of a previously reported attention-based BCI design that incorporates measures of steady-state visual evoked potentials (SSVEP) and alpha band modulations.
View Article and Find Full Text PDF