ACS Appl Mater Interfaces
June 2019
A key challenge for metasurface research is locally controlling at will the nanoscale geometric features on meter-scale apertures. Such a technology is expected to enable large aperture meta-optics and revolutionize fields such as long-range imaging, lasers, laser detection and ranging (LADAR), and optical communications. Furthermore, these applications are often more sensitive to light-induced and environmental degradation, which constrains the possible materials and fabrication process.
View Article and Find Full Text PDFWe report observations of shock compressed, unreacted hydrogen peroxide at pressures up to the von Neumann pressure for a steady detonation wave, using ultrafast laser-driven shock wave methods. At higher laser drive energy we find evidence of exothermic chemical reactivity occurring in less than 100 ps after the arrival of the shock wave in the sample. The results are consistent with our MD simulations and analysis and suggest that reactivity in hydrogen peroxide is initiated on a sub-100 ps time scale under conditions found just subsequent to the lead shock in a steady detonation wave.
View Article and Find Full Text PDF