Publications by authors named "John M Cheeseman"

Halophytes are able to thrive in salt concentrations that would kill 99% of other plant species, and identifying their salt-adaptive mechanisms has great potential for improving the tolerance of crop plants to salinized soils. Much research has focused on the physiological basis of halophyte salt tolerance, whereas the elucidation of molecular mechanisms has traditionally lagged behind due to the absence of a model halophyte system. However, over the last decade and a half, two Arabidopsis () relatives, and , have been established as transformation-competent models with various genetic resources including high-quality genome assemblies.

View Article and Find Full Text PDF

The effective development of salt tolerant crops requires an understanding that the evolution of halophytes, glycophytes and our major grain crops has involved significantly different processes. Halophytes (and other edaphic endemics) generally arose through colonization of habitats in severe disequilibrium by pre-adapted individuals, rather than by gradual adaptation from populations of 'glycophytes'. Glycophytes, by contrast, occur in low sodium ecosystems, where sodium was and is the major limiting nutrient in herbivore diets, suggesting that their evolution reflects the fact that low sodium individuals experienced lower herbivory and had higher fitness.

View Article and Find Full Text PDF

The successful integration of activity in saline environments requires flexibility of responses at all levels, from genes to life cycles. Because plants are complex systems, there is no 'best' or 'optimal' solution and with respect to salt, glycophytes and halophytes are only the ends of a continuum of responses and possibilities. In this review, I briefly examine seven major aspects of plant function and their responses to salinity including transporters, secondary stresses, carbon acquisition and allocation, water and transpiration, growth and development, reproduction, and cytosolic function and 'integrity'.

View Article and Find Full Text PDF

Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ~134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes.

View Article and Find Full Text PDF

Extremophile plants thrive in places where most plant species cannot survive. Recent developments in high-throughput technologies and comparative genomics are shedding light on the evolutionary mechanisms leading to their adaptation.

View Article and Find Full Text PDF

Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb.

View Article and Find Full Text PDF

The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T.

View Article and Find Full Text PDF

We present here the Mangrove Transcriptome Database (MTDB), an integrated, web-based platform providing transcript information from all 28 mangrove species for which information is available. Sequences are annotated, and when possible, GO clustered and assigned to KEGG pathways, making MTDB a valuable resource for approaching mangrove or other extremophile biology from the transcriptomic level. As one example outlining the potential of MTDB, we highlight the analysis of mangrove microRNA (miRNA) precursor sequences, miRNA target sites, and their conservation and divergence compared with model plants.

View Article and Find Full Text PDF

HO is an ubiquitous compound involved in signalling, metabolic control, stress responses and development. The compatibility of leaf tissue levels with these functions has, however, often been questioned. The objective here is to document HO levels and variability under natural conditions, and their underlying causes.

View Article and Find Full Text PDF

While H2O2 has been implicated in numerous plant environmental responses, normal levels and variabilities are poorly established, and estimates of leaf tissue concentrations span more than three orders of magnitude, even in a single species under similar conditions. Here, leaf tissue H2O2 contents under natural conditions are reported after determining (i) that H2O2 in extracts was stable with time, (ii) that H2O2 added to the extract was recovered quantitatively, and (iii) that the H2O2 calibration curve was unaffected (or quantifiably affected) by the extract. The broad applicability of the protocol and variability in leaf concentrations were demonstrated using tissue collected from several habitats in association with three, more extensive, experiments.

View Article and Find Full Text PDF