Publications by authors named "John M Cavanaugh"

The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([F]trifluoroacetamido)-1- hexanoicanilide ([F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI).

View Article and Find Full Text PDF

Previous studies involving whole-body post-mortem human surrogates (PHMS) have generated biomechanical response specifications for physically simulated accelerative loading intended to reproduce seat and floor velocity histories occurring in under-body blast (UBB) events (e.g.,.

View Article and Find Full Text PDF

Fourteen simulated underbody blast impact sled tests were performed using a horizontal deceleration sled with the aim of evaluating the dynamic response of the spine in under various conditions. Conditions were characterized by input (peak velocity and time-to-peak velocity for the seat and floor), seat type (rigid or padded) and the presence of personnel protective equipment (PPE). A 50% (T12) and 30% (T8) reduction in the thoracic spine response for the specimens outfitted with PPE was observed.

View Article and Find Full Text PDF

Though energy attenuating (EA) seats for air and spacecraft applications have existed for decades, they have not yet been fully characterized for their energy attenuation capability or resulting effect on occupant protection in vertical underbody blast. EA seats utilize stroking mechanisms to absorb energy and reduce the vertical forces imparted on the occupant's pelvis and lower spine. Using dynamic rigid-body modeling, a virtual tool to determine optimal force and deflection limits was developed to reduce pelvis and lower spine injuries in underbody blast events using a generic seat model.

View Article and Find Full Text PDF

During an underbody blast (UBB) event, mounted occupants are exposed to high rate loading of the spine via the pelvis. The objective of this study was to simulate UBB loading conditions and examine mechanisms of injury in the thoracic, lumbar and sacral spine. Fourteen instrumented, whole-body, postmortem human subject (PMHS) experiments were performed using the WSU-decelerative horizontal sled system.

View Article and Find Full Text PDF

There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al.

View Article and Find Full Text PDF

Diffuse axonal injury (DAI) is a severe form of traumatic brain injury and often induced by blunt trauma. The closed head impact acceleration (IA) model is the most widely used rodent DAI model. However, this model results in large variations of injury severity.

View Article and Find Full Text PDF

Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50 percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50 percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50 percentile male, based on whole body mass, were established.

View Article and Find Full Text PDF

Background: While most Direct laryngoscopy leads to dental injury in 25-39% of cases. Dental injury occurs when the forces and impacts applied to the teeth exceed the ability of the structures to dissipate energy and stress. The purpose of this study was to measure strain, (which is the change produced in the length of the tooth by a force applied to the tooth) strain rate, and strain-time integral to the maxillary incisors and determine if they varied by experience, type of blade, or use of an alcohol protective pad (APP).

View Article and Find Full Text PDF

With the rapid increase in the number of blast induced traumatic brain injuries and associated neuropsychological consequences in veterans returning from the operations in Iraq and Afghanistan, the need to better understand the neuropathological sequelae following exposure to an open field blast exposure is still critical. Although a large body of experimental studies have attempted to address these pathological changes using shock tube models of blast injury, studies directed at understanding changes in a gyrencephalic brain exposed to a true open field blast are limited and thus forms the focus of this study. Anesthetized, male Yucatan swine were subjected to forward facing medium blast overpressure (peak side on overpressure 224-332 kPa; n = 7) or high blast overpressure (peak side on overpressure 350-403 kPa; n = 5) by detonating 3.

View Article and Find Full Text PDF

Objective: Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol.

Methods: Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system.

View Article and Find Full Text PDF

Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s) of blast overpressure (OP) induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM) tracts of cervical spinal cord are limited.

View Article and Find Full Text PDF

A modified Marmarou impact acceleration model was used to help screen biomarkers to assess brain injury severity. Anesthetized male Sprague-Dawley rats were subjected to a closed head injury from 1.25, 1.

View Article and Find Full Text PDF

Objectives: Traumatic brain injury is a poly-pathology characterized by changes in the cerebral blood flow, inflammation, diffuse axonal, cellular, and vascular injuries. However, studies related to understanding the temporal changes in the cerebral blood flow following traumatic brain injury extending to sub-acute periods are limited. In addition, knowledge related to microhemorrhages, such as their detection, localization, and temporal progression, is important in the evaluation of traumatic brain injury.

View Article and Find Full Text PDF

Ultrasonic blades have been shown to cause less acute electrophysiological damage when applied near nerves than monopolar electrosurgery (ES). This study was performed to determine whether the acute nerve damage observed for ES, as well as the relative lack of damage observed for ultrasonic dissection, extends through a subacute timeframe. Muscle incisions were made in rat with the Harmonic(®) Blade (HB) and ES at a distance of 2 mm from the sciatic nerve.

View Article and Find Full Text PDF

Background: Intraoperative awareness with explicit recall is a potentially devastating complication of surgery that has been attributed to low anaesthetic concentrations in the vast majority of cases. Past studies have proposed the determination of an adequate dose for general anaesthetics that could be used to alert providers of potentially insufficient anaesthesia. However, there have been no systematic analyses of appropriate thresholds to develop population-based alerting algorithms for preventing intraoperative awareness.

View Article and Find Full Text PDF

Background: Minimally invasive surgery has been developed with various innovative surgical tools. Ultrasonic (US) blades have been introduced as an alternative to conventional electrocautery (EC) monopolar device. The purpose of the present study was to evaluate the effects of surgical devices used for muscle dissection close to peripheral nerves on motor nerve function using electromyographic (EMG) recordings.

View Article and Find Full Text PDF

Background: Percutaneous stabilization using three-dimensional (3D) navigation system is a promising treatment for pelvic and acetabular fractures. However, there are still some controversies regarding the use of 3D navigation to treat pelvic and acetabular fractures. The purpose of this study was to compare the Iso-C(3D) fluoroscopic navigation, standard fluoroscopy, and two-dimensional (2D) fluoroscopic navigation in placing percutaneous lag screws in pelvic specimens to better understand the merits of 3D navigation techniques.

View Article and Find Full Text PDF

Introduction: There is a need to more accurately diagnose milder traumatic brain injuries with increasing awareness of the high prevalence in both military and civilian populations. Magnetic resonance imaging methods may be capable of detecting a number of the pathoanatomical and pathophysiological consequences of focal and diffuse traumatic brain injury. Susceptibility-weighted imaging (SWI) detects heme iron and reveals even small venous microhemorrhages occurring in diffuse vascular injury.

View Article and Find Full Text PDF

Background: Computer models and human surrogates used to study the forces and motion of the human neck under various loading conditions are based solely on adult data. Pediatric computer models and dummy surrogates used to improve the safety of children could be improved with the inclusion of previously unavailable pediatric muscle data.

Methods: Measurements of neck circumference and neck muscle cross-sectional area (CSA) were taken from ten 50th percentile adult male and ten 10-year old male volunteer subjects.

View Article and Find Full Text PDF

This study examined the cervical muscle response to physiologic, high-rate (100 mm/s) tensile facet joint capsule (FJC) stretch. Six in-vivo caprine C5/6 FJC preparations were subjected to an incremental tensile loading paradigm. EMG activity was recorded from the right trapezius (TR) and multifidus (MF) muscle groups at the C5 and C6 levels; and from the sternomastoid (SM) and longus colli (LC) muscle groups bilaterally at the C5/6 level; during FJC stretch.

View Article and Find Full Text PDF

A modified Marmarou impact acceleration injury model was developed to study the kinematics of the rat head to quantify traumatic axonal injury (TAI) in the corpus callosum (CC) and brainstem pyramidal tract (Py), to determine injury predictors and to establish injury thresholds for severe TAI. Thirty-one anesthetized male Sprague-Dawley rats (392±13 grams) were impacted using a modified impact acceleration injury device from 2.25 m and 1.

View Article and Find Full Text PDF

Background: While the risks associated with the use of electrosurgery near nerves are well known, few studies have examined the neurophysiologic effects of application of the Harmonic Blade, an ultrasonic scalpel, in the vicinity of nerve fibres. This study sought to compare the sub-acute neurophysiologic effects of the Harmonic Blade and electrosurgery after incisions close to the sciatic nerve.

Methods: Incisions were made in rats with the Harmonic Blade and electrosurgery at distances of 1, 2, 3 and 4 mm from the sciatic nerve.

View Article and Find Full Text PDF

Impaired axoplasmic transport (IAT) and neurofilament compaction (NFC), two common axonal pathology processes involved in traumatic axonal injury (TAI), have been well characterized. TAI is found clinically and in animal models in brainstem white matter (WM) tracts and in the corpus callosum (CC), optic chiasm (Och), and internal capsule. Previous published quantitative studies of the time course of TAI expression induced by the Marmarou impact acceleration model have been limited to the brainstem.

View Article and Find Full Text PDF